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Image and Interpretation  
Using Artificial Intelligence to Read Ancient Roman Texts  

Melissa Terras & Paul Robertson  

The ink and stylus tablets discovered at the Roman Fort of Vindolanda are a 
unique resource for scholars of ancient history. However, the stylus tablets 
have proved particularly difficult to read. This paper describes a system that 
assists expert papyrologists in the interpretation of the Vindolanda writing 
tablets. A model-based approach is taken that relies on models of the written 
form of characters, and statistical modelling of language, to produce plausible 
interpretations of the documents. Fusion of the contributions from the lang-
uage, character, and image feature models is achieved by utilizing the 
GRAVA agent architecture that uses Minimum Description Length as the 
basis for information fusion across semantic levels. A system is developed that 
reads in image data and outputs plausible interpretations of the Vindolanda 
tablets. 

 
The ink and stylus texts from Vindolanda are an unparalleled source of 
information regarding the Roman Army and Roman occupation of 
Britain for historians, linguists, palaeographers, and archaeologists.1 The 
visibility and legibility of the handwriting on the ink texts can be im-
proved through the use of infrared photography. However, due to their 
physical state, the stylus tablets (one of the forms of official documenta-
tion of the Roman Army) have proved almost impossible to read. 

This paper describes a system designed to aid historians in reading the 
stylus texts: in the process developing what appears to be the first system 
developed to aid experts in reading an ancient document. This system 
brings together years of research in image analysis, AI architectures, pa-
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pyrology, and palaeography undertaken in the Department of Engi-
neering Science,2 and the Centre for the Study of Ancient Documents,3 
University of Oxford, to construct a complete AI system that goes from 
signal to symbol. We describe knowledge elicited from experts working 
on the texts, and the stochastic Minimum Description Length (MDL) 
agent architecture used to fuse knowledge of image features, knowledge 
of Latin texts including character models, and statistical linguistic models 
of word and character frequency, to arrive at plausible interpretations of 
the Vindolanda texts. The system described in this paper can read in 
image data and output textual interpretations of the writing that appears 
on the documents. 

The GRAVA architecture (Robertson 2001) was developed to solve 
interpretation problems. An interpretation problem is one in which an 
input, for example an image or signal, must be interpreted in the context 
of domain knowledge to produce a symbolic representation. Such prob-
lems usually have multiple plausible interpretations, and the task involves 
finding the most likely interpretation. The GRAVA architecture has 
previously been applied successfully to the interpretation of satellite aerial 
images, and is adapted here to provide plausible solutions to the inter-
pretation problem of constructing a reading of the Vindolanda texts.  

The system is not an “expert system” that automatically “reads” and 
provides a transcription of the texts; rather it is a papyrologist’s assistant 
that mobilizes disparate knowledge, such as linguistic and visual clues, 
and uses these to speed up the process by which an expert can arrive at 
the most likely interpretation of a text.  

This paper is divided into sections. The first describes the background 
of the project, providing information about the Vindolanda texts, and 
discusses the knowledge elicitation exercises undertaken to make the 
process the papyrologists use to read ancient texts explicit. The next 
sketches the parts of the GRAVA architecture used in this system and 
illustrates the approach with an illustrative example. In the section 
following that, we discuss how the linguistic and character shape 
knowledge is modelled within the GRAVA framework: the success of the 
system is achieved by mobilizing knowledge of the characters and words 
along with the stroke data from image analysis routines. Then we present 
results of the running system applied to ink and stylus tablets, and the 



MELISSA TERRAS & PAUL ROBERTSON 

3 

final section provides a conclusion, sketching out the successes and 
possible applications of this research. 

The Vindolanda Texts 
The discovery of the tablets in Vindolanda,4 a Roman Fort built in the 
late 80s AD near Hadrian’s Wall at modern day Chesterholm, has 
provided an unparalleled resource regarding the Roman occupation of 
northern Britain and the use and development of Latin around the turn 
of the first century AD. Textual sources for the period in British history 
from AD 90 to AD 120 are rare, and the ink and stylus tablets are a 
unique and extensive group of documents providing a personal, im-
mediate, detailed record of the Roman Fort at Vindolanda from around 
AD 92 onwards (Bowman and Thomas 1983, 1994, 2003; Bowman 
1997).  

The ink tablets, carbon ink written on thin leaves of wood cut from 
the sapwood of young trees, have proved the easiest to decipher. In most 
cases, the faded ink can be seen clearly against the wood surface by the 
use of infrared photography, a technique used frequently in deciphering 
ancient documents (Bearman and Spiro 1996). The majority of the six 
hundred writing tablets that have been transcribed so far contain 
personal correspondence, accounts and lists, and military documents 
(Bowman and Thomas 1983, 1994, 2003). 

The two hundred stylus tablets found at Vindolanda appear to follow 
the form of official documentation of the Roman Army found 
throughout the Empire (Turner 1968; Fink 1971; Renner 1992). It is 
suspected that the subject and textual form of the stylus tablets will differ 
from the writing tablets as similar finds indicate that stylus tablets tended 
to be used for documentation of a more permanent nature, such as legal 
papers, records of loans, marriages, contracts of work, sales of slaves, etc 
(Renner 1992), although the linguistic aspects of the tablets will be 
similar as they are contemporaneous documents from the same source, 
probably written by the same scribes.  
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Figure 1. Stylus tablet 836, one of the most complete stylus tablets unearthed at 
Vindolanda. The incisions on the surface can be seen to be complex, whilst the 
wood grain, surface discoloration, warping, and cracking of the physical object 
demonstrate the difficulty papyrologists have in reading such texts. 

 
Manufactured from softwood with a recessed central surface, the 

hollow panel of the stylus tablets was filled with coloured beeswax. Text 
was recorded by incising this wax with a metal stylus, and tablets could 
be re-used by melting the wax to form a smooth surface. Unfortunately, 
in nearly all surviving stylus tablets the wax has perished,5 leaving a 
recessed surface showing the scratches made by the stylus as it penetrated 
the wax.6 In general, the small incisions are extremely difficult to 
decipher. Worse, the pronounced wood grain of the fir wood used to 
make the stylus tablets, staining and damage over the past two thousand 
years, and the palimpsestic nature of the re-used tablets further 
complicate the problem; a skilled reader can take several weeks to tran-
scribe one of the more legible tablets, whilst some of the texts defy 
reading altogether. Prior to the current project, the only way for the 
papyrologists to detect incisions in the texts was to move the text around 
in a bright, low raking light in the hope that indentations would be 
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highlighted and candidate writing strokes become apparent through the 
movement of shadows, although this proved frustrating, time consu-
ming, and insufficient in the transcription of the texts. 

In 1998 the Department of Engineering Science and the Centre for 
the Study of Ancient Documents at the University of Oxford were 
jointly awarded a research grant by the Engineering and Physical 
Sciences Research Council (EPSRC) to develop techniques for the 
detection, enhancement and measurement of narrow, variable depth 
features inscribed on low contrast, textured surfaces (such as the Vindo-
landa stylus tablets). To date, the project has developed a wavelet 
filtering technique that enables the removal of woodgrain from images of 
the tablets to aid in their transcription (Bowman, Brady & Tomlin 
1997). In addition, a technique called “Shadow Stereo” or “Phase 
Congruency” has been developed, in which the camera position and the 
tablet are kept fixed, but a number of images are taken where the tablet is 
illuminated by a strongly orientated light source.7 If the azimuthal 
direction of the light sources (that is, the direction to the light source if 
the light were projected directly down on to the table) is held fixed, but 
the light is alternated between two elevations, the shadows cast by 
incisions will move but stains on the surface of the tablet remain fixed. 
This strongly resembles the technique used by some papyrologists who 
use low raking light to help them read the incisions on the tablet (Terras 
2000; Molton et al. 2003). Edge detection is accomplished by noting the 
movement of shadow to highlight transitions in two images of the same 
tablet, and so candidate incised strokes can be identified by finding 
shadows adjacent to highlights which move in the way that incised 
strokes would be expected (Schenk 2001; Schenk & Brady 2003). Al-
though this is not a standard technique in image processing, encouraging 
results have been achieved so far, and a mathematical model has been 
developed to investigate which are the best angles to position the light 
sources (Molton et al. 2003). Work currently being undertaken is 
extending the performance and scope of the algorithms (Pan et al. 2004), 
and the papyrologists are beginning to trust the results and suggestions 
which are being made about possible incisions on the tablets (Bowman 
& Tomlin forthcoming). Future work will be done in relating the 
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parameters of analysis to the depth profile of the incisions to try to 
identify different overlapping writing on the more complex texts.  

Whilst these have had some success in analysing the surfaces of the 
tablets, it was essential to develop a way of aiding the papyrologists in 
utilising generated results. Although the developed algorithms could be 
easily added to readily available image manipulation software,8 allowing 
others to apply the algorithms themselves, it would do little to actually 
provide a tool that would actively help the papyrologists in the 
transcription of texts; a complex process which has been described as 
“teasing information out of material which is all too often barely legible, 
fragmentary, or obscure (or all three at once),” (Bowman 1994, 10). The 
focus of this paper is to present the possibility of developing an 
intelligent system that can aid the papyrologists in their task, which will, 
in the future, dovetail with the image processing work to provide a 
complete “signal to symbol” program which can produce realistic 
interpretations of the Vindolanda stylus texts within a reasonable 
timeframe.  

The Process of Reading an Ancient Document  
In order to identify the tools that could be built to aid the papyrologists 
in their transcription of the Vindolanda tablets, it was first necessary to 
try and gain an understanding of what the papyrology process actually 
entails. Little investigation has been done so far to ascertain how experts 
read such damaged and debraded documents (Terras 2002).9 Techniques 
borrowed from the field of Knowledge Elicitation (McGraw & 
Harbison-Briggs 1989; Waterman 1986) were used to gather quanti-
tative and qualitative information about how papyrologists work, resul-
ting in an in-depth understanding of the ways different experts approach 
and reason about damaged and abraded texts. Firstly, as with all 
knowledge acquisition tasks, the domain literature was researched, and 
any associated literature was collated. Three experts were then identified 
who were working on the ink and stylus texts, and who were willing to 
take part in this investigation. The experts were observed whilst going 
about their tasks, and unstructured interviews were undertaken, where 
the experts described their domain, and the individual processes and 
techniques that they preferred. More structured interviews were then 
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undertaken, when the experts were asked to describe particular facets of 
their task, such as the identification of letter forms and the role of 
grammar, word lists, and external historical and archaeological resources 
in the reading of the documents. A series of Think Aloud Protocols 
(TAPs) were then undertaken (a technique adopted from experimental 
psychology, where the expert is urged to utter every thought that comes 
to mind whilst undertaking a specified task) and the experts were given 
structured tasks to complete. These sessions were recorded, transcribed, 
and analyzed using Content Analysis techniques (Terras 2002). These 
exercises demonstrated that the experts use a recursive reading 
mechanism which oscillates between different levels, or modules, of 
reading, and the process was rationalized into defined units, to develop a 
connectionist model of how papyrologists approach and start to under-
stand ancient texts. 

An expert reads an ancient document by identifying visual features, 
and then incrementally builds up knowledge about the document’s 
characters, combinations of characters, words, grammar, phrases, and 
meaning, continually proposing hypotheses, and checking those against 
other information, until s/he finds that this process is exhausted. At this 
point a representation of the text is prepared in the standard publication 
format. At each level, external resources may be consulted, or be uncon-
sciously compared to the characteristics of the document. 
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Figure 2. The proposed model of how experts read an ancient text. Public 
papyrology (Youtie 1963) refers to the published reading of texts in a common 
format, after the reading has taken place. Private papyrology is the implicit 
process the experts undertake when reading a text. 

Replicating the Process Using Artificial Intelligence 
The field of automated handwriting recognition is expansive and com-
plex (see Impedovo (1993) for an introduction), but although there has 
been a great deal of work on pattern recognition algorithms aimed at re-
cognising text, the vast majority is irrelevant to this research. Most tech-
niques are aimed at recognising printed text, making them incompatible 
with the hand-written, cursive text found on the Vindolanda tablets. 
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Work done on hand-written non-cursive text primarily approaches the 
problem with pattern class or neural network learning: where the system 
learns individual characters from thousands of examples. There are 
simply insufficient examples to be able to train such a neural net, even 
from the corpus of Vindolanda ink texts. Other work, largely from the 
late 1960s and early 1970s, emphasised “syntactic pattern classification”: 
the idea that a character is composed of strokes that have a certain 
relationship to each other (see Connell & Brady’s approach to shape 
representation (1987), and Fu & Swain’s introduction to Syntactic Pat-
tern Recognition (1969)). The attempts to teach a machine to “read” 
text in this manner were hampered by the problem of stroke detection: 
image processing techniques were not developed enough to provide the 
necessary data. There have been previous attempts to use connectionist 
inspired models of human reading (see Figure 3) as the basis on which to 
build systems to “read” cursive handwriting (Dodel & Shinghal 1995; 
Parisse 1996; Côté et al. 1998). These systems have had limited success: 
they are dependent on oversimplification of word shape and contour, the 
models rely on strong contextual constraints, and they are only successful 
with small lexicons of 25-35 words. Appropriating these systems in an 
attempt to build a tool to aid the stylus tablets would be unsuccessful for 
the same reason that existing image processing techniques could not be 
used to analyse the surface data: the data is too fragmentary, too noisy, 
and too complex. It had been suggested that using Minimum 
Description Length may provide a way to successfully model systems 
when only sparse data exists (Robertson 2001), and this is the technique 
adopted here.  

AI has repeatedly shown that interpreting our world requires bringing 
to bear a great deal of world knowledge. The process of reading an 
ancient document, especially documents that are in a very bad state of 
disrepair such as the Vindolanda stylus tablets, is an especially good 
example of the need to mobilize a great deal of a-priori knowledge. It is 
clear that the remnants of writing on the tablets themselves contain in-
sufficient information to recover the original written text, but by 
applying sufficient linguistic knowledge of character shapes, word and 
letter frequency, and grammatical information, the tablets can sometimes 
be read. Implementing a system that can automate the process requires 
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an architecture that can fuse the many different kinds of knowledge in 
order to arrive at an estimate of the most probable interpretation. 
Numerous architectures have been proposed to solve interpretation 
problems: the HEARSAY system (Erman et al. 1980) was developed for 
speech recognition and more recently Hidden Markov models (HMM) 
have been used in natural language processing (NLP) (Charniak 1993) 
but these approaches have drawbacks. Blackboard systems can be hard to 
control, and HMMs can be too restrictive to incorporate complex and 
diverse kinds of knowledge (Robertson 2001, Robertson & Laddaga 
2003). We developed GRAVA to address these concerns and provide a 
flexible backbone upon which image interpretations problems can be 
solved. In the following section we describe the features of GRAVA used 
in this project. 

Solving Interpretation problems with GRAVA 
GRAVA (Grounded Reflective Adaptive Vision Architecture), developed 
by Robertson (2001) provides a way to implement different modules, or 
agents, of computer programs which can compare and pass different 
types of information to each other. This agent based system attempts to 
find interpretations of input data (usually image data) by fitting models 
to the data. The best interpretation is sought by trying to find the 
simplest explanation of the input data. The motivating concept behind 
GRAVA is the idea that the input data can be thought of as a message 
that has been encoded by some process and communicated through a 
noisy channel. 

GRAVA utilises an architecture where the atomic elements are 
implemented as agents (in Yolambda, a dialect of LISP), using familiar 
programming practices. The primary purpose of an agent “is to fit a 
model to its input and produce a description element that captures the 
model and any parameterisation of the model” (Robertson 2001, 59). 
The GRAVA system manipulates agents, and builds programs from 
them. Agent co-operation can span semantic levels, allowing hierarchical 
stacking. This enables the building of systems that exhibit semantic 
interaction, a well understood hierarchical concept (McClelland & 
Rumelhart 1986) that allows the behaviour and performance of systems 
to be closely monitored and understood (using techniques such as 
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convergence analysis). Such an architecture is well suited to interpreta-
tion problems, which can be solved by fitting an input to a series of 
models and computing the likelihood of these matching. Many 
interpretation problems have more than one possible solution, and by 
using such a system many solutions can be propagated, the best solution 
being the ultimate target. Of most relevance to this paper, Robertson 
shows how his architecture is an effective way of rendering hierarchical 
systems by demonstrating how his software can “read” a hand-written 
phrase. The text in this case was a nursery rhyme. Given that the 
GRAVA system was shown to be a robust and easily adaptable architect-
ture, it was chosen as the basis on which to develop a system to read the 
Vindolanda ink, and eventually, stylus tablets. 

In this section we provide an overview of the GRAVA architecture by 
introducing the concepts behind the GRAVA architecture, the objects 
that make up the architecture, and an overview of their protocols. We 
conclude the section by developing an illustrative example of how 
GRAVA agents compete using Minimum Description Length (MDL), 
showing how GRAVA was used to “read” a handwritten text, and thus 
provides the basis for the system developed to propagate interpretations 
of the Vindolanda texts. 

Agent Selection Paradigms 
Autonomous agents are expected to operate without the intervention of a 
central control mechanism (such as a focus of control database). One 
approach to the agent selection problem that has been the focus of 
considerable attention is the notion of a market based approach. The 
idea is that an agent wishes to farm out a subtask to another agent 
capable of performing the subtask. Agents that are candidates to perform 
the subtask compete by bidding a price. This often works well, 
producing efficient solutions. However, two problems arise in such 
systems: 
 

1. Selecting an appropriate basis for cost computations so that the 
bidding is fair (so that different types of information can be 
compared across different semantic levels). 
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2. Because the bidding is piecewise local, such systems are prone to 
find local minima and miss the global minima (i.e. the best 
match on one semantic level may not be the correct match 
overall). 

 
Our approach addresses these two problems as follows: the basis for cost 
computation used is description length, and the use of a Monte Carlo 
sampling technique avoids the problem of being restricted to the best 
local solution. These concepts are described more fully here, before 
discussing the MDL GRAVA architecture in detail. 

Minimum Description Length 
A major puzzle in perceptual psychology has been how the brain 
reconciles different sorts of information, for example colour, motion, 
boundaries of regions, or textures, to yield a percept (Eysenck & Keane 
1997). For example, in image segmentation, by changing the texture 
model it is possible to increase or decrease the number of regions that are 
identified. Similarly, the number of boundary shapes that are found can 
be increased or decreased by changing the search parameters. The 
reading of ancient documents is just one (complex) example of an inter-
pretation problem, where the individual is faced with visual ambiguity 
and competing information, which has to be reconciled and resolved 
with other types of information (in this case linguistic data) to generate a 
plausible solution. There has been substantial consideration, by psycho-
logists and image processing experts, of how these different processes are 
combined. One suggestion is that there is a common value that can be 
used to calculate the “least cost” solution when comparing different types 
of information. This has been adopted by the field of Artificial Intelli-
gence, in the concept of Minimum Description Length: (MDL).  

First introduced in the late 1960s, and developed in the 1970s, 
(Wallace & Boulton 1968; Rissanen 1978), MDL applies the intuition 
that the simplest theory which explains the data is the best theory.10 
MDL can be used as a means of comparing data in coding theory, in 
which the goal is to communicate a given message through a given 
communication channel in the least time or with the least power. MDL 
is a very powerful and general approach which can be applied to any 
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inductive learning task, and can be used as a criterion for comparing 
competing theories about, or inductive inferences from, a given body of 
data. It is well suited to interpretation problems: where solutions can be 
generated by comparing unknown data to a series of models, when the 
most likely fit can generate plausible solutions to the problem. 

Description length is the correct measurement in an interpretation 
problem because it captures the notion of likelihood directly. Descrip-
tion length is calculated from the probability of an input, such as the 
data describing the shape of an unknown character, matching a known 
model. By adding the description lengths of the outputs of different 
agents, it is possible to generate a global description length for the output 
of the whole system. The smallest global description length generated 
from many runs of a system is most likely to be the correct solution to 
the problem: the Minimum Description Length, or MDL. This is the 
approach adopted in the GRAVA system.  

Monte Carlo Select Methods 
The MDL Agent architecture described in this paper addresses the need 
to integrate knowledge at different semantic levels. To understand an 
image that consists of high-level components such as words, intermediate 
level features such as characters, and of low-level features such as strokes 
and endpoints, we need to integrate different levels of processing.  

Single thread of control solutions, such as the blackboard and forward 
chaining approaches, depend upon taking a path towards a solution and 
backtracking past failures until a solution is found (Erman et al. 1980). 
The same is true of subsumption (Brooks 1986). These are essentially 
depth first searches for a solution – not searches for the best solution. In a 
robot navigation problem, we may be happy if the robot negotiates the 
obstacles in the environment and finally ends up at the destination. In 
interpretation problems, just finding a solution is not good enough. A 
Latin sentence can have many plausible parses. Most of them do not 
make sense. 

Markov Chain/Monte Carlo methods (MCMC) have become 
popular recently in computer vision (Geman & Geman 1984; Hammers-
ley & Handscomb 1964; Lau & Ho 1997) but have been limited to 
modelling low-level phenomenon such as textures (Karssemeijer 1992). 
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In natural language understanding, use of hidden Markov models has 
been successful as an optimisation technique with certain restricted kinds 
of grammar. Problems that can be described as Hidden Markov Models 
(HMM) (Baum 1972) can yield efficient algorithms. For example, in 
natural language understanding, some grammars permit efficient 
algorithms for finding the most probable parse. Stochastic Context Free 
Grammars (SCFGs) can be parsed so as to find the most probable parse 
in cubic time using the Viterbi algorithm (Viterbi 1967). Only the 
simplest grammars and problems can be solved efficiently in this way, 
however, and for the more interesting grammars and for more complex 
problems in general, other techniques must be used. Certainly something 
as loosely defined as an agent system incorporating semantics from 
multiple levels would rarely fit into the HMM straitjacket.  

Even for natural language processing, finding the best solution can be 
prohibitively expensive when the Viterbi algorithm cannot be employed. 
In visual processing, with images whose complexity greatly exceeds that 
of sentences, and which are three dimensional (as opposed to the linear 
arrangement of words in a sentence), finding the best solution is 
infeasible. Approximate methods are therefore necessary: Monte-Carlo 
techniques are very attractive in these situations.  

In an ambiguous situation, such as parsing a sentence, in which many 
(perhaps thousands) legal parses exist, the problem is to find the parse 
that is the most probable. If the problem can be defined in such a way 
that parses are produced at random and the probability of producing a 
given parse is proportional to the probability that the parse would result 
from a correct interpretation, the problem of finding the most probable 
parse can be solved by sampling. If P  is a random variable for a parse, 
the probability distribution function (PDF) for P  can be estimated by 
sampling many parses drawn at random. If sufficiently many samples are 
taken, the most probable parse emerges as the parse that occurs the most 
frequently. Monte Carlo techniques use sampling to estimate PDF’s.  

Monte Carlo methods are attractive for a number of reasons: 
 

1. They provide an approximate solution to the search of 
combinatorially prohibitive search spaces. 
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2. By adjusting the number of samples, the solution can be 
computed to an arbitrary accuracy. 

3. Whereas the best solution cannot be guaranteed by sampling 
methods, measuring standard error during the sampling phase 
allows the number of samples to be adjusted to yield a desired 
level of accuracy. 

 
GRAVA employs a Monte Carlo method, a means of providing 
approximate solutions by performing statistical sampling, to randomly 
choose which data is passed upwards between levels. This is a “weighted 
random” selection process which picks likely data much more frequently 
than less likely examples (see Robertson 2001, 48). If only the data with 
the lowest Description Length was passed up between levels, the correct 
answer may never be found: the data with the locally Minimum 
Description Length may not be the correct selection on the global level. 
The stochastic nature of this method of sampling ensures the generation 
of different results, and also means that the system rapidly generates 
possible solutions without relying on exhaustive search (cutting search 
time). The system generates possible solutions on each iteration; the 
more iterations, the better the chance that a match to the solution is 
generated. Convergence on an ideal solution is then asymptotic: the 
system finds approximate solutions, and the more iterations that occur, 
the better the approximation that is reached. In practice, the system 
tends to find the exact solution in a short number of iterations, meaning 
that performance times are acceptable (this is demonstrated in the 
“Results” section below). 

MDL Agent Architecture 
Interpretation problems represent an interesting and important class of 
problems. Many important problems in AI can be characterized in this 
way. Our architecture is designed to allow complex programs to be 
structured around the notion of finding the most likely interpretation. 
Frequently our interpretations at one level affect interpretations at other 
levels of processing. Sound and image fragments taken in isolation are 
often unintelligible because without context there is not enough 
information to construct a reasonably likely interpretation of the frag-
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ment. This is particularly evident in the problem of interpreting Vindo-
landa writing tablets. 

A recurring issue in multi-agent systems is the basis for cooperation 
among the agents. Some systems assume benevolent agents where an 
agent will always help if it can. Some systems implement selfish agents 
that only help if there is something in it for them. As a direct result of 
the use of Monte Carlo sampling, agents in GRAVA appear to cooperate 
in order to achieve a global MDL. Agent cooperation is an emergent 
property of the architecture since the agents do not directly engage in 
cooperative behaviour. Rather agents are selected by Monte Carlo samp-
ling that happen to cooperate to produce the global MDL. Our approach 
to agent cooperation involves having agents compete to assert their 
interpretation. If one agent produces a description that allows another 
agent to further reduce the description length so that the global 
description length is minimized, the agents appear to have cooperated. 
Locally, the agents compete to reduce the description length of the image 
description. The algorithm used to resolve agent conflicts guarantees 
convergence towards a global MDL thus ensuring that agent cooperation 
“emerges” from agent competition. The MDL approach guarantees con-
vergence towards the most probable interpretation. 
 
In the following subsection, we describe the architectural objects that im-
plement these concepts in the GRAVA architecture.  

Objects in the GRAVA Architecture 
The architecture is built from a small number of objects: Models, Agents, 
Interpreters, and Descriptions. 

All of these terms are commonly used in AI literature to mean a wide 
range of things. In the GRAVA architecture they have very specific 
meanings. Below, we describe what these objects are and how they 
cooperate to solve an interpretation problem.  

The architecture takes an input description ∆in and produces an 
output description ∆out as its result. A description consists of a collection 
of description elements <ε1, ε2,..., εn>. The output description is an 
interpretation (I∈Q(∆in)) of the input where Q(x) is the set of all 
possible interpretations of x. 
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The goal of the architecture is to find the best interpretation Ibest 
that is defined as the interpretation that minimizes the global description 
length. 

))((minarg inbestI
IDL

best

∆  

Descriptions and Description Elements 

A description ∆ consists of a set of description elements ε. 

>=<∆ nεεε ,...,, 21  

Agents produce descriptions that consist of a number of descriptive 
elements. The descriptive elements provide access to the model, 
parameters, and the description length of the descriptive element. For 
example, a description element for a character might include a represen-
tation of the strokes that make up the character. A description element is 
a pair consisting of a model and its parameters. 

Description elements are produced by agents that fit models to the 
input. Description elements may be implemented in any way that is 
convenient or natural for the problem domain.  

Models 
Fitting a model to the input can involve a direct match but usually invol-
ves a set of parameters. Consider as input, the string “t h r e e   b l i n d   
m i c e”. We can interpret the string as words. In order to do so, the 
interpreter must apply word models to the input in order to produce the 
description. If we have word models for “three”, “blind”, and “mice” the 
interpreter can use those models to produce the output description:  

((three) (blind) (mice)) 

The models are parameterless in this example. Alternatively we could 
have had a model called “word” that is parameterized by the word in 
question: 

((word three) (word blind) (word mice)) 
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In the first case there is one model for each word. In the case of 
“three” there is an agent that contains code that looks for “t”, “h”, “r”, 
“e”, and “e” and returns the description element “(three)”. In the second 
case there is one model for words that is parameterized by the actual 
word. The agent may have a database of words and try to match the 
input to words in its database.  

Agents 
The primary purpose of an agent is to fit a model to its input and 
produce a description element that captures the model and any 
parameterization of the model. An agent is a computational unit that has 
the following properties: 
 

1. It contains code that is the implementation of an algorithm 
that fits its model to the input in order to produce its output 
description. 

2. It contains one or more models (explicitly or implicitly) that it 
attempts to fit to the input.  

3. It contains support for a variety of services required of agents 
such as the ability to estimate description lengths for the 
descriptions that it produces. 

 
The “fit” method returns a (possibly null) list of description elements 
that the agent has managed to fit to the data. The interpreter may apply 
many agents to the same data. The list of possible model fits from all 
applicable agents is concatenated to produce the candidate list from 
which a Monte Carlo selection is performed. 

An Illustrative Example of MDL Agents 
A key idea of this paper is that of agent cooperation that spans semantic 
levels. The idea of semantics affecting lower level processes is not new. In 
the late 1970’s there was much interest within AI concerning heter-
archical-programming approaches (Fahlman 1973; McDermott & 
Sussman 1973). These systems suffered from behaviour that defied 
understanding and, equally importantly, analysis. Marr noted that in the 
human visual system that there was no evidence that higher level 
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processes had any control over lower level vision and that we could 
profitably study low-level vision without addressing such issues. Com-
puter vision has largely followed that path for the past 20 years. The issue 
has not gone away, however, and the notion of how differing levels of 
semantic interpretation are made to interact is at the very heart of the AI 
problem. One particularly interesting approach is the parallel distributed 
processing (PDP) work of Rumelhart and McClelland (McClelland & 
Rumelhart 1986). The PDP approach is to develop neural network 
architectures that implement useful processes such as associative memory. 
Of particular relevance to the MDL agents described in this paper is an 
Interactive activation model for word perception developed by Rumel-
hart (McClelland & Rumelhart 1986b). 

 
 

Figure 3. Interactive activation model for word perception 
 

Figure 3 shows the multi-level word recognition architecture. Each 
plane contains mutually exclusive possibilities for an interpretation. So 
for example the word “Time” is exclusive of the word “Trim'” and the 
letter “T” is exclusive of the letter “J”. If the word is “trim” it is not 
“time” so the more we believe the word to be “trim” the less we believe it 
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is “time”. This is modelled in the McClelland and Rumelhart architect-
ture by forming inhibitory links between words on the same level. 
Similarly on the character level the more that we believe a character is 
“T” the less we believe that it is “J” (or any character other than “T”) and 
this, too, they implement by building bi-directional inhibitory links 
between all characters. Between levels the connections are excitory be-
cause believing that the First character is “T” improves the likelihood 
that the word is “Time” or “Trim” so there is an excitory link between 
the letter “T” and all words that start with “T”. The excitory links are 
also bidirectional since believing that the word is “Trim” increases the 
likelihood that the character is “T”.  

The PDP approach depicted in Figure 3 has a number of problems, 
including how neural systems of this form can be mapped over an input 
string. Even if these issues were to be successfully addressed, however, the 
approach throws out the programming model completely and leaves us 
to develop a completely new computation model based on neuronal 
systems.  

A goal of the GRAVA architecture is to enable systems to be built that 
exhibit the kind of semantic interaction sought by these earlier systems 
that: 

 
1. is based on a well understood concept that permits the 

behaviour to be reasoned about (unlike the heterarchical 
approaches); and 

2. retains a more conventional programming model (than the PDP 
approach). 

 
The former is achieved by appealing to well-understood ideas from 

communication theory and Monte-Carlo methods (Shannon 1949, 
Hammersley & Handscomb 1964), and the latter is achieved by 
providing an architecture in which the modules of competence are 
implemented as agents using familiar programming practices.  

In this subsection we demonstrate this by solving the problem that 
McClelland and Rumelhart solved using PDP but within the GRAVA 
architecture. This serves to clearly illustrate the power of the architecture 
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on a simple problem and provides a sketch of an approach to interpreting 
Vindolanda tablets. 

Recognizing a Hand Written Phrase  

 

 
Figure 4. Nursery Rhyme Test Data 

 
The experiment described here was trained on a very small corpus and 

tested on the hand-written phrase “MARY HAD A LITTLE LAMB” 
which is shown in figure 4. Although the test data is simple the system 
illustrates well the approach described in this paper and its robustness. In 
this example, illustrated in figure 5, there are three levels of agents. The 
lowest level agents detect low-level features of the written text. There are 
four feature detectors at this level. Each agent reports on features dis-
covered within a character position. 

 
1. Top stroke endpoints. This agent reports on the number of 

stroke endpoints at the top of the character. For example the 
letter “N” has one stroke endpoint on the top and “W” has two. 

2. Bottom stroke endpoints. This agent reports on the number of 
stroke endpoints at the bottom of the character. For example 
the letter “A” has two endpoints at the bottom of the character 
and the letter “I” has one. 

3. Stroke Junctions. This agent reports on the number of line 
junctions formed from three or more lines. For example the 
letter “A” has two such junctions. The letter “N” has none. 

4. Character present. This agent detects whether the character 
position contains anything at all. Everything but the space 
character contains something. 
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The character boxes are divided into “top” and “bottom” so that the 
top stroke and bottom stroke features can be determined from a simple 
line endpoint filter. The system contains two very simple filters that 
detect line endpoints and complex junctions.  

In order to simulate the dearth of low-level cues typical of vision 
problems, we designed this experiment to utilize feature detectors that 
are by themselves incapable of uniquely identifying the characters in the 
handwritten text. Even if there is no noise and the feature detectors 
detect their features with 100% accuracy there is insufficient information 
using only the features described above to unambiguously identify a 
character. For example ‘S’, ‘C’, ‘I’, ‘L’ and ‘N’ all have one endpoint at 
the top, one at the bottom, and no junctions.  

The next level of agents attempts to build character descriptions from 
the evidence collected by the feature detectors. The character agent 
contains a database that has information in the form of a set of models. 
The models represent evidence from low-level sensors and the frequency 
of the letters in the nursery rhyme. In this case the nursery rhyme acts as 
a corpus from which statistical evidence is collected and from which the 
models are constructed.  

The word agent attempts to find evidence for words in the input by 
looking at evidence from the character finding agents. The universe of 
possible words is derived from the words found in the corpus. In this 
case, the full corpus of words is restricted to that found in the nursery 
rhyme. The correct interpretation of any test data will be expected to 
match words found in the corpus.  
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Figure 5. Hand Written Phrase Recognizer Program 
 
All together the following full corpus of symbols can be used to build a 
description of the input: 
 

• Low level features: t=0, t=1, t=2, b=0, b=1, b=2, j=0, j=1, j=2, 
p=0, p=1.  

• Character level symbols: A, B, C, D, E, F, G, H, I, L, M, N, O, 
R, S, T, U, V, W, Y, Space, and  

• Word level symbols:  A, And, As, Everywhere, Fleece, Go, Had, 
Its, Lamb, Little, Mary, Snow, Sure, That, The, To, Was, 
Went, White. 

Performance of the Illustrative Example 
The following run shows the result of running this simple example with 
the six agents described above (as shown in Figure 5).  
 
=> (runCycles #t) 
 
Description Length=306.979919  
Description=(t=0 b=0 j=0 p=0 t=0 b=2 j=0 p=1 t=0 b=2 j=2 p=1  
             t=0 b=2 j=2 p=1 t=2 b=1 j=1 p=1 t=0 b=0 j=0 p=0  
             t=2 b=2 j=2 p=1 t=0 b=2 j=2 p=1 t=0 b=0 j=0 p=1  
             t=0 b=0 j=0 p=0 t=0 b=2 j=2 p=1 t=0 b=0 j=0 p=0  
             t=1 b=1 j=0 p=1 t=1 b=1 j=0 p=1 t=2 b=1 j=1 p=1  
             t=2 b=1 j=1 p=1 t=1 b=1 j=0 p=1 t=2 b=1 j=1 p=1  
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             t=0 b=0 j=0 p=0 t=1 b=1 j=0 p=1 t=0 b=2 j=2 p=1  
             t=0 b=2 j=0 p=1 t=0 b=0 j=2 p=1)  
 
Description Length=116.690002  
Description=(M A A E HAD A   I L T E S T   I R M B) 
 
Description Length=65.699996  
Description=(M R A Y HAD   R LITTLE LAMB) 
 
Description Length=61.749996  
Description=(M R A E HAD A LITTLE LAMB) 
 

Description Length=41.649997  
Description=(MARY HAD A LITTLE LAMB) 
 

The agents start out with a description based on the identifications of 
the low level agents that detect tops, bottoms, junctions, and non-space. 
The description length is calculated as the sum of the description lengths 
of each of the symbols in the description and in this case comes to 
306.979919. By the second result the description length has improved to 
116.690002. This has involved identifying characters from the low level 
cues. As can be seen from the description there are a number of errors in 
the interpretation due to ambiguity. The word ‘HAD’ is correctly 
identified but in the remaining description there are 9 character identi-
fication errors out of 18. By the third result matters have improved so 
that the description length is 65.699996, three words are correctly 
identified and 3 character identification errors remain. The next 
improvement brings the number of correct words to four and still has 
three character errors. Finally the sentence is correctly interpreted with a 
description length of 41.649997 and no errors. 

This example, while simple, illustrates two important properties of the 
architecture: 

 
1. MDL formulation leads to the most probable interpretation. The 

final interpretation was indeed the correct one. 
2. Global MDL mobilizes knowledge to address ambiguities. In the 

second result of this example fully half of the characters were 
‘guessed’ wrongly by the system. By the fifth result all of the 
ambiguous choices had been made correctly because the correct 
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choices were what lead to the globally minimum description 
length. 

 
While the input data is inadequate for the correct and unambiguous 

identification of the characters, the semantic constraints allow correct 
identifications to be made. The semantic constraints are propagated by 
letting competing agents ‘win’ in proportion to the reduction in global 
description length. The Monte Carlo sampling used in this algorithm 
prevents the system from getting wedged in local minima and ensures 
that the globally minimum description length (i.e. the most probable 
interpretation) is converged upon. 

Applying the GRAVA System to the Vindolanda Writing Tablets 
In order to be able to utilize the GRAVA system to aid in the reading of 
the Vindolanda Texts, information regarding the character forms and 
language used at Vindolanda had to be collated, and a more sophisticated 
character agent had to be developed. This section details the develop-
ment of the character and word agents that were applied to images of the 
Vindolanda tablets. 

Collating Corpus Data from Vindolanda 
Palaeographic and linguistic data regarding the characters and language 
used at Vindolanda was collated. A markup scheme was developed to 
annotate a corpus of images of the ink and stylus texts (using the 
GRAVA annotation tool), resulting in an XML representation of each 
character on a stroke by stroke basis (Terras & Robertson 2004). In total, 
1506 individual characters from the ink tablets were annotated, and 180 
characters from the stylus tablets. Word lists were compiled, and 
lexicostatistics regarding the frequency of words, characters, and 
combinations of characters used at Vindolanda were generated (Terras 
2002). This data provided the necessary corpus data to build the charac-
ter and word models for use in this application of the GRAVA system.  

System Development and Architecture  
The character database formed by annotating images of the ink tablets is 
the main source of information regarding the character forms on the 
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Vindolanda Texts available. The models derived from this data are used 
to compare the unknown characters in the test set (which may be 
annotated by hand, or generated automatically by image processing al-
gorithms that allow feature extraction (see the section “Analyzing 
Automated Data” below, as well as Robertson et al. 2005). The 
difference between the original system (presented earlier) and the new 
system lies in the way that character models are developed, and how the 
test data is compared to this set of character models. Whereas the original 
system relied on endpoints, this final version relies on data regarding the 
strokes themselves. A stroke detection agent replaced the endpoint agents 
in the feature level of the original system. This results in models of 
characters that are less sensitive to the feature detection process (i.e. the 
generation of end points, which is problematic when dealing with noisy 
images such as those of the stylus tablets). It also means that the feature 
level agents depend on information that is much more easily propagated 
from automatic feature detection, allowing for easier amalgamation with 
the stroke detection system. Most importantly, stroke information is 
much more stable than endpoint data. Small changes in image quality 
cause only small changes in the stroke features detected. A schematic of 
the final system that was developed is shown below (figure 6), 
incorporating all elements of the resulting process. 

Before being used by the character agent, both the test set of data and 
the annotated corpus must be prepared in order to analyze their stroke 
data. This is done by extracting the strokes, drawing a bounding box 
around each of the characters to preserve groupings of strokes, and 
transforming these strokes onto a canonical sized grid to allow easy 
comparison. 

Character models are built from the annotated set of images from the 
corpus by applying a Gaussian blur operator, and summing every ins-
tance of each individual character to build up a character model. The 
character agent then compares the unknown characters from the test data 
with those in the character models, also utilizing frequency information 
about each character to generate a description length for each model. 
One of these likely characters is then selected using the Monte Carlo 
sampling method and passed up to the Word agent. This ensures that, 
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over successive iterations, a fair, representative amount of each candidate 
character is selected and passed onto the next level. 

The Word level takes in the data from the Character agent, combines 
them to form words, and compares them with the words from the corpus 
– the word “models” in this case being the words found in the corpus. A 
description length for this comparison is noted. A selection is made from 
the possible words utilizing Monte Carlo sampling methods, and the 
final word output is generated.  

 
Figure 6. Schematic of final system. GRAVA architecture is highlighted to 
indicate the processes which are carried out as part of the final run of the system. 
The “Annotated image” can be generated manually by an “Annotation tool”, or 
automatically by “Image feature extraction”. 
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The system then adds the description lengths for all the words in the 
phrase (or string of words) together, giving a global description length for 
that combination of characters and words.  

The system repeats this process as often as the user dictates, and keeps 
track of the lowest global description length generated by each successive 
run. The Minimum Description Length produced corresponds with the 
most likely answer: or the best fit answer available.  

The preparation of the character models, and the way that both the 
character and word agents work, is discussed in detail below, before 
demonstrating results from this system. 

The Construction of Character Models  
A character model is defined as a probability field that indicates the likely 
placing of one or more strokes of a two-dimensional character, producing 
a general representation of a character type. Unknown characters can 
then be compared to a series of these models, and the probability that 
they are an instance of each one calculated, the highest probability indi-
cating a match. Whilst the first implementation of the system relied on 
an end point agent, this was replaced by a stroke detection agent that 
builds up character models based on the actual strokes of the character, 
in order for this system to work with data generated from image pro-
cessing techniques, which would allow the system to become automated 
in the future.  

On a conceptual level, the (stroke-based) character model is construc-
ted by taking an image of an individual character, finding its bounding 
box (identifying the rightmost x co-ordinate, and the leftmost x co-
ordinate, and the highest and lowest y co-ordinates), and transforming 
this into a standardized (21 by 21 pixel) grid. The stroke data is 
convolved with a Gaussian Blur operator to reduce over-fitting. Each 
standardized representation is accumulated onto a generalized matrix for 
each character type: resulting in a generalized representation of each type 
of character. These are subsequently used as the models to which 
unknown characters are compared. 
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Calculating the Final Model 
The first character is drawn onto a “blank” grid. A second instance of the 
character (if there is one available) is drawn over this, the values of this 
being added to the first instance. Additional instances of the character are 
laid over the grid, and the values summed as they go. This results in a 
composite model of all available character instances from the corpus, 
showing the path the strokes are most likely to make.  

An example of how these steps combine to generate a character model 
is given below, where a small corpus which contains three ‘S’ characters is 
used to generate a character model of an S. 
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Figure 7.  The generation of a character model from a small corpus. Three letter 
S’s are identified, and bounding boxes drawn around them (A). The stroke data 
is then transformed into a 21 by 21 pixel grid (B). A Gaussian Blur is applied 
(C). The composite images generate a character model (D). The darker the area, 
the higher the probability of the stroke passing through that pixel. In this way, 
the probabilities of the stroke data occurring are preserved implicitly in the 
character models.  
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Learning Models from the Corpus 
The corpus of annotated images was randomly divided into a test set and 
two training sets: that of the ink and the stylus tablets. Keeping the test 
and training data separate allows fair results to be generated. Two sets 
(ink and stylus) of character models were generated from the training set; 
the ink text character models are shown below.  

The character models generated from the ink data show that some of 
the letter forms, such as A, C, I, M, N, and T are fairly standardized 
throughout the test data. Other characters are more problematic. H, L, 
and V have a more confused appearance, indicating greater variability in 
the appearances of instances of the characters. D and Q are problematic, 
as the long strokes can either slope diagonally left to right, or right to 
left. A bi-product of this research is that the letterforms generated from 
this data can be compared to the letter forms generated from the stylus 
tablet data, generating new information regarding the palaeography of 
the Vindolanda texts, which is of great interest to papyrologists and 
palaeographers (Terras 2002). 
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Figure 8. Character models generated from the training set of the ink text corpus. 
The darker the area, the higher the certainty that a stroke will pass through that 
box. 
 
Not all of the letterforms are present in stylus text character models, 

as the data set of the stylus tablets was much smaller than that of the ink 
tablets and some characters are missing from the sample set. Neverthe-
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less, both sets of models provide adequate representations for comparison 
with unknown characters: missing characters from the stylus set can be 
replaced with those from the ink set.  

The Character Agent: Comparing Unknown Characters to the Character 
Models 
The character agent’s function is to compare unknown characters to the 
character models composed from the training set. This is achieved by 
extracting the strokes from the test data, transforming them to the 
standard size, then calculating the description length for matching the 
unknown character to each model in the data set. The character agent 
also utilizes statistical information about the likelihood of a character 
being present, derived from the letter frequency analysis of the corpus. 
After the description length has been calculated (from a combination of 
the MDL frequency and MDL comparison of stroke evidence), one of 
the likely characters identified is selected, using the Monte Carlo 
sampling methods, and passed up to the word level. 

Comparing Unknown Words to the Word Corpus 
The Word agent’s function is to compare strings of possible characters to 
the word models in the corpus, in much the same way as the character 
agent compares stroke data to models generated from the corpus. 
However, the word agent’s task is considerably simpler than that of the 
character agent, as there is no need to represent stroke data. The word 
“models” are the words in the corpus themselves, and the probability of 
them occurring is known from the word frequency data.  

This is best understood by considering a possible message representing 
the fit of a word model to a character sequence. Consider fitting the 
word “foo” to the word model “for”. The message begins with a 
representation of the model for the word “for”, then for each character 
there is either a “1” bit, indicating that the character in that position 
matched the model, or a “0” bit indicating that the character didn’t 
match, followed by a representation of the character that failed to match. 
For this example the message stream will look like this: 
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The description length of the match is therefore the code length for 

the model used, one bit for each matching character, and one bit plus the 
code length for each non-matching character.  

The system compares the string of characters to each individual word 
model in the corpus. The comparison with the lowest DL generates the 
most likely word identification.  

However, what if the string of letters represents a word that is not in 
the corpus? The system compares the string to all available models, and 
also generates the total description length from the sum of all of the 
characters’ description lengths. If there is no match between the sequence 
and the existing models, this DL will be the lowest, and the solution is 
presented as a string of characters. However, due to the fact that bi-graph 
information is included in the word agent, the string with the minimum 
DL will be statistically the most likely combination of characters, even 
though a word has not been matched to the input. This can be seen in 
the results section below.  

Performance of the Word Agent 
The string of characters “U S S I B U S” was fitted to all 342 of the word 
models that had a string length of 7 characters. Only the results with a 
description length less than 36 bits are presented here (these being the 
lowest 8 description lengths computed.)   It is clear that the string USSI-
BUS, present in the corpus, is the closest match, as this produces the 
lowest description length. Four other words (or word fragments present 
in the corpus) are identified as being as probable as the string of 
characters itself, SCRIBUS, SCRIBAS, VEHIMUS, UIDEDUN.  This 
indicates how the system propagates best-fit solutions, which are 
approximate to the correct solution.  
 

“FOR” model     1  1  0    “O”
      -log2P(“FOR”)                             -log2P(“O”)
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Figure 9. Result of fitting word models to the characters USSIBUS, most likely 
fit. The word USSIBUS is by far the most likely contender.  

 
Again, the system chooses which word to select as a solution using a 

Monte Carlo selection algorithm. The system does not incorporate any 
other data regarding word sequencing or grammar, at this stage. The 
MDL for a string of words is calculated by simply summing the 
description length for each word. Subsequent iterations produce different 
sequences of characters and words. The most probable solution is that 
with the lowest MDL after a number of successive runs.  

Results 
The adapted version of the GRAVA system was used to analyze various 
sets of test data, to see how effective it could be in producing the correct 
“reading” of a text. Firstly, a section of tablet 255 was analyzed, using the 
character models ascertained from the ink tablet corpus as the basis of 
comparison. This gave encouraging results, and also shows the 
asymptotic nature of the system’s convergence on a solution. This 
experiment was then repeated with the same section of tablet, which in 
this case had been annotated in a different (wrong) manner, to see how 
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the system coped with more difficult data. A section of stylus tablet was 
then analyzed, using firstly the set of character models derived from the 
ink corpus, and secondly the set of character models derived from the 
stylus corpus, to indicate how successfully the system operates on the 
stylus texts. Finally, a section of ink tablet which had been automatically 
annotated was analyzed, to indicate if this implementation of the system 
provided a possible solution to the problem of incorporating data 
generated from the image processing algorithms into a knowledge-based 
system.  

Using Ink Data for Ink Tablets 
The first complete run was done on a section of ink tablet 255. 

 
Figure 10. A section of ink tablet 255, annotated with “ussibus puerorum 
meorum”.11  

 
The set of character models used in this run was that derived from the 

ink tablet corpus. The output of the system is shown below. 
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Figure 11. Output from first successful run on the section of 255, using the ink 
tablet character models.  

 
In this run of the system, 8 iterations took place before the correct 

answer was generated. (Although the system carried out 25 iterations on 
this data, the Minimum Description Length generated occurred in 
iteration 8, and so this is the last data shown. It should also be stressed 
that, with all of these results, the experiment was run a number of times, 
and the results presented are the best case, where the system generates the 
correct result in the fewest iterations.) Previous outputs from iteration 1, 
2, 3, and 5, had been possible solutions, but that from iteration 8 proved 
the best, given the data provided. This was also the correct solution. The 
GRAVA system successfully reconstructs the correct reading of the text 
in a short time, on this occasion.  

System Performance  
Although, above, the correct output was generated in merely 8 iterations, 
because of the stochastic nature of the process there is a possibility that 
the correct answer may never be found. If it is generated (in practice the 
correct output is usually generated within a few iterations) the number of 
iterations taken to reach this answer will be different on each run. This 
can be shown by determining the average description length that is 
generated over a variety of runs on the same data. The example, 
255front7,12 as used above, was run 200 times, with 25 iterations 
specified in each run. By plotting the average description length gene-
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rated from each of the 25 iterations over the 200 runs, it becomes 
obvious that the system converges on a result. The MDL of the “correct” 
result in this case was 36.863136, whilst after 25 iterations the system 
averaged 37.08221. This is due to the fact that the average asymp-
totically approaches the perfect value because of the Monte Carlo samp-
ling methods utilized (see the previous section “Monte Carlo Select 
Methods”).  

 
Figure 12. Description Length Convergence Over Iterations 

 
Of course, this example only pertains to the section of 255 used as the 

test set. The more complex the input data, the longer the system will take 
to converge on a solution (which will have a different MDL). This 
example, however, demonstrates that the system is effective at generating 
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likely solutions within a relatively short time frame: an important con-
sideration when building systems to aid human experts as they cannot be 
expected to wait for hours until exhaustive searches complete.  

Using Ink Models for an Unknown Phrase 
A second section of ink tablet was analyzed, this time to see how the 
system coped with a more confusing section of strokes, and also how it 
could identify a word that was not in the corpus. The image was 
annotated USSIBUSS, whilst the eventual, correct, annotation is 
USSIBUS. 
 

 
Figure 13. On the left, the section of 255 correctly annotated as US. On the 
right, the same section annotated incorrectly as USS. 

 
Steps were taken to ensure that the word fragment USSIBUSS did not 
occur in the word corpus for this iteration, to see how the GRAVA 
system coped with this difficult input. 
 



HUMAN IT REFEREED SECTION 

40 

 
Figure 14. Output from the system, analysis of awkwardly annotated segment of 
255, using the ink tablet character models.  

 
These results are interesting on a number of levels. Firstly, the system 

is confused by the last few characters in USSIBUSS, indicating that it is 
having problems identifying them. The first problem character is identi-
fied (not unreasonably) as an L, the second as either an N or a T. This 
shows how an unclear character can be assigned a number of possible 
solutions. Secondly, although the sequence of characters (USSIBUSS) is 
not in the word corpus, the system does a good job at reconstructing a 
possible string of characters, resulting in USSIB**S. This is partly due to 
the use of the character models, and also the use of letter frequencies and 
bi-graph frequencies. This approximate solution should be enough to 
give some indication to a human user of what the correct word may be 
(the system will eventually have to interact with experts in this manner). 
Finally, the MDL generated from this solution to the problem is 
56.903217.  The MDL generated from the alternative (correct) annota-
tion of the characters in 5.1 was 36.863143. This shows that the most 
likely solution to identifying the letters will have the lowest MDL, and 
also that there is some need, in the future, to encapsulate the opportunity 
to re-annotate difficult characters in a way that will eventually produce 
the lowest MDL to generate possible solutions. 
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Using Ink Models for Stylus Tablets 
It was suggested in Terras (2002) that the letter forms from the ink 
tablets should correspond to those from the stylus tablets closely enough 
to allow models from the ink tablets to aid in readings of the letters of 
the stylus tablets. In this experiment, a section of stylus tablet 797 was 
analyzed, firstly using models derived from the ink tablets, and in the 
subsequent section, using the small set of models derived from the stylus 
tablet corpus. This section of tablet contained fairly common words, 
NUNC QUID (although it had taken the experts a substantial length of 
time to come up with this reading.)  

 
Figure 15. Section of stylus tablet 797, annotations showing NUNC QUID. 

 
Although a fairly small sample of text, it contains a few difficult cha-

racters (the curvy letter D, for example, and the large C): the results 
demonstrating how the system will cope with the difference in character 
forms between the ink and the stylus texts. 
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Figure 16. Output of GRAVA system, section of 797 utilizing ink character 
models.  

 
The system took 82 iterations to reach the correct interpretation, 

quite a high number of run cycles, probably due to the differences in 
forms between the character sets. The first few iterations, as suspected, 
show that the system had problems with the letter D, interpreting it as 
an M, and the large letter C, interpreting it as an I. However, the correct 
reading was eventually generated when enough run cycles were allowed 
to sort through the various hypotheses thrown up by the data. 

Using Stylus Models for the Stylus Tablets 
The same section of tablet 797 was analyzed, this time using the small 
selection of character models generated from the annotated stylus tablets.  
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Figure 17. Output from section of 797, utilizing the stylus character models set. 

 
This run of the system identified the correct response in only 18 

iterations, making it much more successful than the run, above, where 
data from the ink character models were used. There are a number of 
reasons why this is the case. Firstly, the character models generated from 
the ink and stylus tablets are slightly different, and this small difference 
must have a large effect on the comparisons. Secondly, although the 
stylus models character set is impoverished due to the lack of available 
data, it contains almost all of the characters based in this sample (save for 
the letter U. The model for the character U was borrowed from the ink 
tablet models in order to be able to try this test. The letter U seems to be 
preferred by the recognizer over other characters in this run. This is 
probably because the model for U borrowed from the ink tablet models 
was based on a large number of samples whereas the models for the stylus 
characters were based on a small sample of characters). However, the 
stylus character model set does not contain all the available characters, 
which would make it difficult to identify further examples where less 
common letters predominantly feature. Although comparisons with the 
stylus character models appear better than the ink character models, 
there is still a place for the ink character models. Future implementations 
of the system could have more than one model for each type of letter.  
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Analyzing Automated Data 
It has been shown, above, that the system can correctly interpret anno-
tated images from the corpus which were generated by hand. This is all 
well and good, but in essence the system needs to work effectively 
alongside image processing algorithms that have been developed in 
tandem to this research which can automatically detect possible strokes 
on the stylus tablets (Bowman, Brady & Tomlin 1997; Terras 2000; 
Schenk 2001; Molton et al. 2003; Pan et al. 2004; Brady et al. forth-
coming). The section of 255 used as test data was analyzed and anno-
tated automatically. 

 
Figure 18. Section of 255 analyzed using the automatic feature extraction 
algorithms. 

 
This was then used in the system as test data. Due to the image data of 
the third word being incomprehensibly faint, this was elided from this 
test. The results are presented below. 
 

 
Figure 19. Output from an analysis of 255, using automatically annotated 
images and the character models from the ink tablets.  
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Although the system initially finds the correct result, it goes onto find 
a “better” result that was wrong. This is because in the second word it 
identifies **ER*RUM, where * is an error. Eventually, the Monte Carlo 
search finds characters that match SOLEARUM well enough to get a 
lower description length than PUERORUM. However, the system did 
get the first word 100% correct at the character level, and the second 
word was almost recovered despite a rather poor interpretation at the 
character level.  This shows promise towards generating possible inter-
pretations of images through utilizing this architecture. Further work 
needs to be done on the stroke extraction algorithms used in the auto-
mated annotation process, to encapsulate stroke data more fluidly, to 
enable this to be utilized by the character agent. The current algorithms 
have problems with the grouping of strokes, and identifying the conti-
nuation of strokes where the traces of them are faint. When these 
problems are overcome, and the automated output is in a clearer format, 
it will be easier to generate possible interpretations of the images using 
the GRAVA system. Nevertheless, these results show promise towards a 
possible solution to the problem of how to segue the image processing 
algorithms into an information based system to aid the papyrologists in 
the reading of the texts. 

Conclusion 
This paper has shown how an MDL agent architecture such as GRAVA 
provides the infrastructure to model the reasoning process the papy-
rologists go through when reading an ancient document. The system 
described has an emergent behaviour similar to that of human experts 
and generates possible, reasonable, interpretations. We have shown that 
when stroke knowledge is fused with other constraining linguistic know-
ledge that plausible readings of tablets can be generated.  

Because the foundations upon which the architecture is built (MDL 
and Monte Carlo sampling) are well understood, the behaviour and 
performance of the architecture can be estimated by means such as con-
vergence analysis. While this application has no time critical aspect, in 
other applications where time may be an issue, such as real-time vision 
applications, we can adjust the number of samples to fit the computa-
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tional budged. We can in essence trade off interpretation accuracy 
against time. 

The agents in the architecture appear to cooperate, but this 
cooperation is an emergent property of the architecture. The agents are 
explicitly competitive but the effects of Monte Carlo sampling makes 
their aggregate behaviour appear to be cooperative. This emergent 
cooperative behaviour is perhaps the most important aspect of the archi-
tecture because it provides an implicit information fusion model that 
depends upon the effect that local decisions have upon the global inter-
pretation. In the case of reading the Vindolanda tablets, information 
from character strokes is fused with statistical language information 
including character frequency, character bi-graph frequency, and word 
frequency knowledge.  Additional knowledge such as grammatical know-
ledge or even subject context knowledge could easily be added, incre-
mentally, to the described system. 

It can be objected that our approach is computationally expensive but 
upon closer examination we find that the comparison with competing 
techniques is encouraging. Most AI architectures, as we discussed above, 
search for the first solution that could be found in a depth first manner. 
Our goal is to find approximations to the best solution so comparison 
with those architectures is not appropriate. Speech Recognition and sta-
tistical NLP often use variants of hidden Markov models to find the best 
solution. These methods are comparable and are faster than the Monte 
Carlo approach advocated in this paper but they cannot easily be adapted 
to work with the disparate kinds of knowledge that GRAVA can handle. 
The extra price we pay for the Monte Carlo implementation more than 
pays for itself by providing a flexible knowledge fusion model. 

Although this research did not deliver a stand-alone application for 
the papyrologists to use to aid in reading the stylus tablets, this was not 
the primary aim of the project. It has provided an understanding of the 
type of tools required by the experts, as well as implementing a system 
that can analyse image data and propagate useful interpretations. Further 
testing and development is necessary before a completed application can 
be made available, at present the system requires manual input from the 
engineering scientists to output results, but the findings presented here 
provide the basis for the construction of a standalone system: a fruitful 



MELISSA TERRAS & PAUL ROBERTSON 

47 

culmination of varied, interdisciplinary research. Research continues in 
the Department of Engineering Science and the Centre for the Study of 
Ancient Documents at the University of Oxford, to see how the system 
can be developed to aid in the propagation of readings of not only the 
stylus tablets, but other types of ancient document, such as Greek 
inscriptions.  

The research presented here presents many opportunities for future 
work. From a humanities angle, this type of computer tool could prove 
to be instrumental in reading various types of documents that were ille-
gible to the human eye: the joining of image processing and linguistic 
information allowing many possible interpretations of data to be 
generated to aid experts in their task. It would not be difficult to adapt 
this system to other linguistic systems given that the necessary statistics 
were available, and the primary sources made available for digitization. 
Just how useful such a tool actually is to those who read such primary 
sources remains to be seen, but papyrology as a field has so far embraced 
computer based tools and resources rapidly.   

MDL based architectures could be used on any number of image 
processing tasks, where complex information from other semantic levels 
needs to be used to interpret images. It has been shown here that MDL 
provides the common currency to relate different types of information, 
and this could be investigated further. An architecture such as the one 
described in this paper could be used to read other types of handwriting, 
but the architecture could be expanded much further, to incorporate 
other semantic levels, such as grammar and contextual information. 
MDL architectures could also be used for entirely different image inter-
pretation problems, such as facial recognition, sign language interpret-
tation, or medical image analysis, as long as procedural information from 
different semantic levels was available or obtainable, to allow complex 
hierarchical systems to be implemented. So far as to say, MDL 
architectures could provide the basis for the development of any type of 
computer based interpretation system, for example: speech recognition 
(or production), the analysis and interpretation of physical processes (the 
monitoring of weather, water flow and direction, and the many 
indicative signs of volcanic activity), predicting the outcome in war 
gaming systems, etc. The scope for the appropriation and development 
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of this type of architecture is almost limitless: the important point being 
it provides a way of comparing and contrasting semantically different 
types of information fairly and efficiently to generate the best probable 
outcome from available data. It is an interesting aside that this research, 
aimed at solving a Humanities based problem, has aided in the 
development of novel techniques in computing and engineering science: 
a relatively rare occurrence.   

This paper has presented a novel approach to a complex problem, 
delivering a system that can generate plausible interpretations from 
images, in the same way that human experts appear to do, to aid them in 
their task. It effectively draws together disparate research in image pro-
cessing, ancient history, and artificial intelligence to demonstrate a com-
plete signal to symbol system. In doing so, this research offers further 
opportunities to develop intelligent systems that can interpret image data 
effectively, to aid human beings in complex perceptual tasks.  
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Notes 
 
1. This paper is a version of Robertson et al (2005) which has been written with 

Humanities based computing scholars in mind, as opposed to the original paper 
which is much more mathematical in nature and serves to explain in depth the 
technical aspects of the system to the Artificial Intelligence and Image Processing 
community. Given the two different audiences of the respective journals, it was felt 
appropriate to submit papers regarding the research project to both, as the focus, 
scope, and interest of readers are diverse, and are unlikely to have much 
intersection. 

2. <http://www.eng.ox.ac.uk/> 
3. <http://www.csad.ox.ac.uk/> 
4. Further examples of the tablets, and contextual information regarding Vindolanda, 

can be found at the Vindolanda Tablets Online site  
<http://vindolanda.csad.ox.ac.uk/>. 

5. It is suspected that around 2000 of such tablets exist outside Egypt (Renner 1992). 
6. Only one stylus tablet, 836, has been found so far with its wax intact. Unfortu-

nately this deteriorated during conservation, but a photographic record of the 
waxed tablet remains to compare the visible text with that on the re-used tablet. 

7. These techniques were developed with the permission and guidance of the British 
Museum – where the tablets are now housed. As the documents are fragmentary 
and fragile, it was important to use non-invasive techniques which would not cause 
them to deteriorate any further. 

8. For example using the Visual C++ plugin with PhotoShop. 
9. Aalto (1945), Youtie (1963), Youtie (1966), and Bowman & Tomlin (forth-

coming) are the only discussions found (as yet) which try to describe what the 
papyrology process actually entails, with some higher level discussion available in 
Turner (1968). 

10. The basic concept behind MDL is an operational form of Occam’s razor, “Plura-
litas non est ponenda sine necessitate” or “plurality should not be posited without 
necessity.”  Formulated by the medieval English philosopher and Franciscan monk 
William of Ockham (ca. 1285-1349), the phrase has been adopted by Communi-
cation Theorists to suggest that one should not increase, beyond what is necessary, 
the number of entities required to explain anything (Forster 1999). The shorter an 
explanation, the better. 
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11. Meaning “for the use of my boys”, referring to some cloaks and tunics for Clodius 
Super’s pueri (Bowman and Thomas 1994). 

12. The example 255front7 is the seventh line from the image of the front of tablet 
255. Some tablets have writing on both sides, and are routinely labelled “front” 
and “back”. Because of the size of image files used to capture the data, and the 
demands on computer memory presented by manipulation of these, the files were 
split into individual lines of text for annotation. This also gave easily usable small 
test sets of data. 



HUMAN IT REFEREED SECTION 

52 

References  
aalto, pentii (1945). “Notes on Methods of Decipherment of Unknown Writings 
and Languages.”  Studia Orientalia, Edidat Societas Orientalis Fennica XI.4. 
 
baum, leonard e. (1972). “An inequality and associated maximization technique in 
statistical estimation for probabilistic functions of a Markov process.” Inequalities 3: 1-
8. 
 
bearman, gregory h. & sheila i. spiro (1996). “Archaeological Applications 
of Advanced Imaging Techniques.” Biblical Archaeologist 59.1: 56-66. 
 
bowman, alan k. (1997). “The Vindolanda Writing Tablets.” XI Congresso Inter-
nazionale di Epigrafia Greca e Latina. Roma. 
 
bowman, alan k., michael j. brady & roger s. o. tomlin (1997). “Imag-
ing Incised Documents.” Literary and Linguistic Computing 12.3: 169- 176. 
 
bowman, alan k. & j. david thomas (1983). Vindolanda: The Latin Writing 
Tablets. London: Society for Promotion of Roman Studies. 
 
bowman, alan k. & j. david thomas (1994). The Vindolanda Writing-Tablets. 
(Tabulae Vindolandenses, II). London: British Museum Press. 
 
bowman, alan k. & j. david thomas (2003). The Vindolanda Writing-Tablets. 
(Tabulae Vindolandenses, III). London: British Museum Press. 
 
bowman, alan k. & roger s. o. tomlin (forthcoming 2005). “Wooden Stylus 
Tablets from Roman Britain.” Images and Artefacts of the Ancient World. Eds. Alan K. 
Bowman & Michael Brady. Oxford: Oxford University Press. 
 
brady, michael, xiao-po pan, melissa terras & veit schenk. 
(forthcoming 2005). “Shadow Stereo, Image Filtering and Constraint Propagation.” 
Images and Artefacts of the Ancient World. Eds. Alan K. Bowman & Michael Brady. 
Oxford: Oxford University Press. 
 



MELISSA TERRAS & PAUL ROBERTSON 

53 

brooks, rodney a. (1986). “A Robust Layered Control System for a Mobile 
Robot.” IEEE Journal of Robotics and Automation 2: 14-23.  
 
charniak, eugene (1993). Statistical Language Learning. Cambridge, MA: MIT 
Press. 
 
connell, jonathan h. & michael brady (1987). “Generating and Genera-
lizing Models of Visual Objects.” Artificial Intelligence 31.2: 159-183. 
 
côté, myriam et al. (1998). “Automatic Reading Of Cursive Scripts Using A Rea-
ding Model And Perceptual Concepts: The PERCEPTO System.” International Journal 
of Document Analysis and Recognition 1.1: 3-17. 
 
dodel, jean-pierre & rajjan shinghal (1995). “Symbolic/ Neural Recog-
nition of Cursive Amounts on Bank Cheques.” Proceedings of the Third International 
Conference on Document Analysis and Recognition. Vol. 1. Los Alamitos, CA: IEEE 
Computer Society Press. 15-18. 
 
erman, lee d. et  al. (1980). “The HEARSAY-II  speech understanding system: 
Integrating knowledge to resolve uncertainty.” Computing Surveys 12.2: 213-253.  
 
eysenck, michael w. & mark t. keane (1997). Cognitive Psychology, A Student's 
Handbook. Hove, Psychology Press. 
 
fahlman, scott e. (1973). A Planning System for Robot Construction Tasks. (AI 
Technical Reports, 283), Cambridge: MA: MIT AI Lab. 
 
fink, robert o. (1971). Roman Military Records on Papyrus. Cleveland, OH: Case 
Western Reserve University. 
 
forster, malcolm r. (1999). “The New Science of Simplicity.” Simplicity, 
Inference and Econometric Modelling. Eds. Hugo A. Keuzenkamp, Michael McAleer & 
Arnold Zellner . Cambridge: Cambridge University Press. 83-119. 
 
fu, king sun & philip h. swain (1969). “On Syntactic Pattern Recognition.” 
Software Engineering 2: 155-182. 
 
geman, stuart & donald geman (1984). “Stochastic Relaxation, Gibbs 
Distributions, and the Bayesian Restoration of Images.” IEEE Transactions on Pattern 
Analysis and Machine Intelligence 6: 721-741. 
 
hammersley, john m. & david c. handscomb (1964). Monte Carlo Methods. 
London: Chapman and Hall. 
 



HUMAN IT REFEREED SECTION 

54 

impedovo, sebastiano (1993). Fundamentals in Handwriting Recognition. (NATO 
Advanced Study Workshop on Fundamentals in Handwriting Recognition). Château 
de Bonas: Springer. 
 
karssemeijer, nico (1992). “Stochastic Model for Automated Detection of Calcifi-
cations in Digital Mammograms.” Image and Vision Computing 10.6: 369-375. 
 
lau, t. w. e. & y. c. ho (1997). “Universal Alignment Probabilities and Subset 
Selection for Ordinal Optimization.” Journal of Optimization Theory and Applications 
93: 455-489. 
 
mcclelland james l. & david e. rumelhart (1986). Parallel Distributed 
Processing : Explorations in the Microstructure of Cognition. 2 vols. Cambridge. MA: MIT 
Press. 
 
mcclelland james l. & david e. rumelhart (1986b). “The Programmable 
Blackboard Model of Reading.” Parallel distributed processing : Explorations in the Micro-
structure of Cognition. Vol. 2, Psychological and biological Models. Cambridge. MA: MIT 
Press. 122-169. 
 
mcdermott drew v. & gerald l. sussman (1973). The Conniver Reference 
Manual. (AI Memo 259). Cambridge. MA: MIT AI Lab. 
 
mcgraw, karen l. & karen harbison-briggs (1989). Knowledge Acquisition: 
Principles and Guidelines. London: Prentice-Hall. 
 
molton, nick et al. (2003). “Visual Enhancement of Incised Text.” Pattern Recog-
nition 36: 1031-1043. 
 
pan, xiao-bo et al. (2004). “Enhancement and Feature Extraction for Images of 
Incised and Ink Texts.” Image and Vision Computing. 22.6: 443-451. 
 
parisse, christophe (1996). “Global Word Shape Processing in Off-Line Recog-
nition of Handwriting.”  IEEE Transactions on Pattern Analysis and Machine Intelligence 
18.4: 460-464. 
 
renner, timothy (1992). “The Finds of Wooden Tablets from Campania and 
Dacia as Parallels to Archives of Documentary Papyri from Roman Egypt.” Copenhagen 
Congress paper. 
 
rissanen, jorma (1978). “Modelling by Shortest Data Description.”  Automatica 
14: 465-471. 
 



MELISSA TERRAS & PAUL ROBERTSON 

55 

robertson, paul & robert laddaga (2003). “An Agent Architecture for 
Information Fusion and its Application to Robust Face Identification.” Proceedings of 
the 21st International Conference on Applied Informatics, Innsbruck, Austria.  
 
robertson, paul (2001). A Self-Adaptive Architecture for Image Understanding. Diss. 
Oxford: Department of Engineering Science, University of Oxford. 
 
robertson, paul et al. (forthcoming 2005). “Image to Interpretation: An MDL 
Agent Architecture to Read Ancient Roman Texts.” Submitted.  
 
schenk, veit u. b. (2001). Visual Identification of Fine Surface Incisions. Diss. 
Oxford: Department of Engineering Science, University of Oxford. 
 
schenk, veit u. b & michael brady (2003). “Visual Identification of Fine 
Surface Incisions in Incised Roman Stylus Tablets.” Paper presented at ICAPR 2003: 
International Conference in Advances in Pattern Recognition, Calcutta, December 10-13 
2003.  
 
shannon, claude e. (1949). “Communicating in the Presence of Noise.” Proceed-
ings of the Intsitute of Radio Engineers 37: 10-21. 
 
terras, melissa (2000). “Towards a Reading of the Vindolanda Stylus Tablets: 
Engineering Science and the Papyrologist.” Human IT 4.2: 255-272.  
 
terras, melissa (2002). “Image to Interpretation: Towards an Intelligent System to 
Aid Historians in the Reading of the Vindolanda Texts.” Diss. Oxford: Department of 
Engineering Science, University of Oxford. 
 
terras, melissa & paul robertson (2004). “Downs and Acrosses, Textual 
Markup on a Stroke Based Level.” Literary and Linguistic Computing 19.3: 397-414. 
 
turner, eric g. (1968). Greek Papyri: An Introduction. Oxford, Clarendon Press. 
 
viterbi andrew j. (1967). “Error Bounds for Convolution Codes and an 
Asymptotically Optimal Decoding Algorithm.” IEEE Transactions on Information 
Theory 13: 260-269.  
 
wallace, christopher s. & david m. boulton (1968). “An Information 
Measure for Classification.” Computer Journal 11: 185-195. 
 
waterman, donald a. (1986). A Guide to Expert Systems. Reading, MA: Addison-
Wesley. 
 



HUMAN IT REFEREED SECTION 

56 

youtie, herbert c. (1963). “The Papyrologist: Artificer of Fact.” Greek Roman and 
Byzantine Studies 4: 19-32. 
 
youtie, herbert c. (1966). “Text and Context in Transcribing Papyri.” Greek 
Roman and Byzantine Studies 7: 251-8. 
 
 
 
 


