
JOUNI SMED & HARRI HAKONEN

Smed, Jouni & Hakonen, Harri. “Synthetic Players: A Quest for Artificial Intelligence in Computer Games.”
human it 7.3(2005): 57–77

Synthetic Players
A Quest for Artificial Intelligence in Computer Games

Jouni Smed and Harri Hakonen

Synthetic players are the computer-controlled actors in a computer game. In
this paper, we describe both the implementation issues and the behavioural
expectations related to synthetic players. We recognize the role of synthetic
players by analysing the components of games in general and computer games
in particular.

In 1962 students at MIT competed against each other in the first real-
time graphical computer game Spacewar (Graetz 1981). Probably none
of them could have dreamt how realistic and complex computer games
would turn into in four decades and how large a business would grow
around them. However, it took ten years before commercial arcade
games such as Pong and Space Invaders created the business in the 1970s
and before home computers brought computer games within the reach of
all enthusiasts in the 1980s. Since then game development and
programming have turned from small amateur enterprises into a more
professional and larger-scale industry. Nowadays, the typical time-span
of development from an idea to a finished product is about two years and
demands the work contribution of 20–50 persons. Game industry is
usually compared to film industry, and in 2001 the global market of
computer games finally surpassed global film box office. The current
estimates of the annual revenue generated by computer games are around
€25 billion and the annual growth is predicted to be over ten per cent
over the next few years (Game Developers’ Association of Australia
2003).

HUMAN IT REFEREED SECTION

58

The game industry has awakened to the possibilities of academic
research. International Game Developers Association (2003) lists game
programming among the eight core topics of game-related academic re-
search. Game programming is defined to cover “[a]spects of traditional
Computer Science – modified to address the technical aspects of gam-
ing”. This interest in novel solutions and improved methods is under-
standable, because the marketing of computer games is highly
technology-driven. Earlier the selling points were the amount of colours
and real-timeliness, then the amount of polygons and the frame update
frequency, and now the amount of simultaneous players in a networked
game and the realism of the simulation. These features also reflect what
programming problems have been in focus of game developers at the
time.

Although one might think that computer games are favourable
environments for artificial intelligence (AI) or simulation related
research, co-operation between academic researchers and game develop-
ers has been most lively in graphics programming. In particular for the
past two decades the SIGGRAPH community has been the forum where
problems and solution methods are exchanged to and fro. Theoretical
methods have found their application and eventually ended up as part of
the hardware (e.g. in 3D display cards).

In recent years the spread of broadband network connections and the
growth of their capacity have geared interest towards problems of
distributed multiplayer games (Smed, Kaukoranta & Hakonen 2002).
Because computer games are real-time applications, the effect of com-
munication delays are compensated using algorithmic prediction
methods, which were originally developed in virtual environment
research. Another active field of research is cheating prevention, because
the money involved in online gaming is arousing even criminal interest.
New methods against virtual attacks are currently being developed,
which aim at preventing spying and altering the game data transmitted
over a network.

AI related game problems have only recently returned to the focus of
academic research (Laird & van Lent 2001). Whereas traditional
methods mainly concentrate on turn-based and discrete games, the
interest is now in developing real-time methods, which seem to act

JOUNI SMED & HARRI HAKONEN

59

intelligently, for continuous game worlds. These methods are used in the
implementation of computer-controlled actors, or synthetic players, for
the game.

In this paper, we take a look at the features that synthetic players
should have and provide. To understand the role of synthetic players in a
computer game, we begin with a general discussion of games, computer
games and their constituents. After that, we look at synthetic players
from two perspectives: First, we describe the structure of the software
components of a synthetic player and describe features that are important
in their design and implementation. Second, we analyse the behavioural
features that synthetic players should demonstrate.

Defining a Game
Huizinga (1955, 132) defines “play” as

an activity which proceeds within certain limits of time and space, in a
visible order, according to rules freely accepted, and outside the sphere of
necessity or material utility. The play-mood is one of rapture and
enthusiasm, and is sacred or festive in accordance with the occasion. A
feeling of exaltation and tension accompanies the action, mirth and
relaxation follow.

This definition also captures many of the features present in games. A
dictionary definition states that “game” is “a universal form of recreation
generally including any activity engaged in for diversion or amusement
and often establishing a situation that involves a contest or rivalry”
(Encyclopædia Britannica 2004). Crawford (1984, ch. 1) defines game as
“a closed formal system that subjectively represents a subset of reality.”
Accordingly, a game is self-sufficient, follows a set of rules, and has a
representation in the real world. These observations are echoed by the
definitions of Costikyan (2002, 24), who sees a game as “an interactive
structure of endogeneous meaning that requires players to struggle
toward a goal”, and Salen & Zimmerman (2004, 80) to whom a game is
“a system in which players engage in an artificial conflict, defined by
rules, that results in a quantifiable outcome.”

HUMAN IT REFEREED SECTION

60

We define ‘game’ by recognizing its main components, the
relationships between them, and the aspects that these relationships
form, which is illustrated in Figure 1 (Smed & Hakonen 2003).

player

rules goal

opponentrepresentation agreement

definition

mo
tiv
at
io
nCHALLENGE

obstruction

inde
term

inis
m

CONFLICT

corre
spond

ence

concretization

PLAY

player

rules goal

player

rules goal

opponentopponentrepresentationrepresentation agreement

definition

mo
tiv
at
io
nCHALLENGEagreement

definition

mo
tiv
at
io
nCHALLENGE

obstruction

inde
term

inis
m

CONFLICT

obstruction

inde
term

inis
m

CONFLICT

corre
spond

ence

concretization

PLAY

corre
spond

ence

concretization

PLAY

Figure 1. Components, relationships and aspects of a game.

We can immediately recognize three distinct components involved in
a game. First, we have players who are willing to participate in the game
(e.g. for enjoyment, diversion or amusement). Second, we must have
rules which define the limits of the game. Third, there are goals which
give rise to conflicts and rivalry among the players. Between these three
components we have the following relationships. The players are willing
to follow the rules of the game. The rules define the goals of the game.
The goals motivate the players to participate in the game and drive the
game forwards, and achieving a goal in the game gives a player enjoy-
ment. We call this trio the challenge aspect of the game.

The challenge aspect is not enough for a definition, because games are
also about conflict. For example, a crossword puzzle may be a challenge in
its own right but there is hardly any conflict in solving it – unless
someone erases the letters or changes the hints or keeps a record of the
time to solve the puzzle. Obviously, the conflict arises from the presence
of an opponent, which aims at obstructing the player from achieving the
goal. The opponent does not have to be a human but it can be some
random process (e.g. the throw of dices or the shuffling of a deck of

JOUNI SMED & HARRI HAKONEN

61

cards). The main feature of the opponent is that it is indeterministic to
the player: because the player cannot predict exactly what another human
being or a random process will do, outwitting or outguessing the
opponent becomes an important part of the game.

Challenge and conflict aspects are enough for defining a game in an
abstract sense. However, in order to play the game, it needs to be
concretized into a representation. This representation can be a cardboard
board and plastic pieces as well as three-dimensional graphics rendered
on a computer screen. Even the players themselves can be the represent-
tation, as in the children’s game of tag. Regardless of the representation
there must exist a clear correspondence to the rules of the game.

Let us take the game of poker as an example. The players agree to
follow the rules, which state (among other things) what cards there are in
a deck, how many cards one can change, and how the hands are ranked.
The rules also define the goal, having as good hand as possible, which is
the player’s motivation. The other players are opponents, because they
try to achieve a better hand to win. Also, the randomness of the deck
caused by shuffling opposes the player, who cannot determine what cards
will be dealt next. The game takes a concrete form in a deck of plastic-
coated cards (or pixels on the screen), which represent the abstractions
used in the rules.

Apart from the features discussed above, the game play also includes
subjective elements such as an immersion in the game world, a sense of
purpose, and a sense of achievement from mastering the game. One
could argue that the sense of purpose is essential for the immersion.
What immerses us in a game (as well as in a book or a film) is the sense
that there is a purpose or motive behind the surface. In a similar fashion,
the sense of achievement is essential for the sense of purpose (i.e. the
purpose of a game is to achieve goals, points, money, recognition etc.).
From a human point of view, we get satisfaction in the process of nearing
a challenging goal and finally achieving it. These aspects, however, are
outside the scope of our current discussion.

Computer games are a subset of games. To be more precise, let us
define ‘computer game’ as a game that is carried out with the help of a
computer program. This definition leaves us some leeway, since it does
not implicate that the whole game takes place in a computer. For

HUMAN IT REFEREED SECTION

62

example, a game of chess can be played on a computer screen or on a
real-world board, regardless of whether the opponent is a computer
program or not. In effect, a computer program in a game can act in three
roles: First, it can be used to co-ordinate the game process (e.g. ensuring
the participant in a chess game makes legal moves). Second, it can be
used to illustrate the situation (e.g. displaying the chess board and pieces
on screen). Third, the computer program can participate in the game as a
fellow-player. This last role is interesting to us, and we call a computer-
controlled participant in a game a synthetic player. To understand what
is expected from the synthetic player, we have to begin by taking a closer
look at the software components of a computer game.

Software Components of a Computer Game
The three roles – co-ordination, illustration, and participation – for a
computer program in a game closely resemble the model-view-controller
(MVC) architectural pattern for computer programs (Krasner & Pope
1988). The basic idea of MVC is that the representation of the under-
lying application domain (model) should be separated from the way it is
presented to the user (view) and from the way the user interacts with it
(controller). Figure 2 illustrates the MVC components and the data flow
in a computer game.

The model part includes software components responsible for the co-
ordination role (e.g. evaluating the rules and upholding the game state).
The rules and basic entity information (e.g. physical laws) form the core
structures. These remain unchanged while the state instance is created
and configured for each game process. The core structures do not need to
cover all the rules, because they can be instantiated. For example, the
core structures can define the basic mechanism and properties of playing
cards (e.g. suits and values) while the instance data can provide the
additional structures (i.e. rules) required for a game of poker (e.g.
ranking of the hands, staking, and resolving ties).

JOUNI SMED & HARRI HAKONEN

63

control logic

driver

proto-view

rendering

state instance core structures

input
device

action

configuration

instance data

synthetic
view

synthetic
player

script output
device

human player

options

perception

model

viewcontroller
control logic

driver

control logic

driver

proto-view

rendering

proto-view

rendering

state instance core structuresstate instance core structures

input
device

action

input
device

action

configuration

instance data

configuration

instance data

synthetic
view

synthetic
player

script

synthetic
view

synthetic
player

synthetic
view

synthetic
player

script output
device

human player

options

perception

output
device

human player

options

perception

model

viewcontroller

Figure 2. Model, view and controller in a computer game.

The view part handles the illustration role. A proto-view provides an
interface into the model. It is used for creating a synthetic view for a
synthetic player or for rendering a view to an output device. The
synthetic view can be pre-processed to suit the needs of the synthetic
player (e.g. board co-ordinates rather than an image of the pieces on a
board). Although rendering is often equated with visualization, it may as
well include audification and other forms of sensory feed-back. The
rendering can have some user-definable options (e.g. graphics resolution
or sound quality).

The controller part includes the components for the participation
role. Control logic affects the model and maintains the integrity (e.g. by
excluding illegal moves suggested by a player). The human player’s input
is received through an input device filtered by a driver software. The con-
figuration component provides instance data, which is used in generating
the initial state for the game. The human player takes part in the data
flow by perceiving information from the output devices and generating
actions to the input devices. Although Figure 2 includes only one player,
naturally there can be multiple players participating in the data flow,

HUMAN IT REFEREED SECTION

64

each with their own output and input devices. Moreover, the computer
game can be distributed among several nodes in a network rather than
residing inside a single node. Conceptually, this is not a problem since
the components in MVC can as well be thought to be distributed (i.e.
the data flows run through a network rather inside a single computer). In
practice, however, distributed computer games provide their own
challenges (for a more detailed discussion, see Smed, Kaukoranta &
Hakonen 2002).

A synthetic player is a computer-controlled actor in the game. It can
be an opponent, a non-player character which participates limitedly, or a
deus ex machina which can control natural forces or godly powers and
thus intervene the game events. The more open the game world is, the
more complex the synthetic players are. This trade-off between the
model and the controller is obvious: if we remove restricting code from
the core structures, we have to reinstate it in the synthetic players. For
example, if the players can hurt themselves by walking into fire, the
synthetic player must know how to avoid it. Conversely, if we rule out
fire as permitted area, path finding for a synthetic player becomes
simpler.

As we can see in Figure 2, the data flow of the human player and that
of the synthetic player resemble each other. This allows us to project
human-like features into the synthetic player. We may even argue that,
in a sense, there should be no difference between the players whether
they are humans or computer programs; if they are to operate on the
same level, both should ideally have the same powers of observation and
the same capabilities. Still, synthetic players usually cheat (e.g. by having
outside knowledge or receiving extra resources), and this has been the
norm for a long time. Generally, the reason is obvious: a computer
program is no match for human ingenuity, and is therefore granted the
benefit of playing on its own ground. This is understandable – and we
may even forgive it when it seems fair – but, ideally, the synthetic players
should be in a similar situation as their human counterparts.

Synthetic Player’s Structure
The AI system of a computer game comprises two parts: pattern
recognition and decision-making system (Kaukoranta, Smed & Hakonen

JOUNI SMED & HARRI HAKONEN

65

2003). Figure 3 gives a more detailed illustration of the synthetic player
component of Figure 2. The world (or rather the synthetic view of the
game world) consists of primitive events and states (phenomena) that are
passed to pattern recognition and possibly stored for later use in a history
buffer. The information abstracted from the current (and possibly the
previous) phenomena is then forwarded to the decision-making system.
The game world allows a set of possible actions, and the decision-making
system chooses the ones to carry out and convey to the control logic
component.

Figure 3. Components of the synthetic player.

The separation between pattern recognition and decision-making is

not always clear-cut. Nevertheless, the distribution of responsibilities
helps us to recognize features that the methods have. These features also
outline the implementation issues that should be addressed already in the

World
Primitive events

and states

Possible actions

Requested
actions

Decision-
making system

Observed events
and states

Pattern
recognition

Previous
primitives

HUMAN IT REFEREED SECTION

66

design of an AI system for a synthetic player (Smed, Kaukoranta &
Hakonen 2003).

Real-time Response
Whereas in the traditional turn-based games the computer opponent can
think (almost) as long as it requires, nowadays games mostly require real-
time response. This puts a hard computational strain on the synthetic
player, because it can no longer delve into finding an optimal strategy,
but has to react immediately. Response is the key-word – even to such
extent that game developers tend to think that it is better to have hordes
of mindless cannon-fodder than to grant the synthetic players a shred of
intelligence. In the past the main reason for this was that the game AI
was not slated a fair share of the overall processing resources.
Surprisingly, even today the average game AI is granted about ten per
cent of the processor capacity (Dybsand 2004).

Distribution has become more important now that games using
networking are more common. This may present one solution to the
dilemma of achieving both real-time response and intelligence: instead of
running the synthetic players on one machine, they can be distributed so
that the cumulative computational power of the networked nodes is
utilized. For example, Homeworld (Relic Entertainment 1999) uses this
technique and distributes the computer-controlled opponents among the
participating computers.

Autonomy and Communication
Distribution naturally begs the question of how autonomous the
synthetic players should be. As long as we can rely on the network there
is no problem, but if nodes can drop out and join at any time,
distributed synthetic players must display autonomy. This means two
things. First, the synthetic player must be persistent, because it can be
relocated to another node if the one where it is currently run gets cut off.
Second, the synthetic player must be self-sufficient, because it cannot rely
on outside processes but should be able to operate on its own. This is not
necessarily a drawback, because autonomy can lead to a smaller and
better design, and complex behaviour can emerge from seemingly simple
autonomous agents.

JOUNI SMED & HARRI HAKONEN

67

A corollary of autonomy is that the synthetic players must have a way
to communicate explicitly with each other. Because there is no central
intelligence controlling them, they have to inform others of their
decisions, indicate their plans, and negotiate with each other – just like
we humans do in the real world. And, as we shall later see, these com-
munication skills are required also when interacting with the human
players.

Levels of Decision-making
Classically, decision-making problems are divided into three levels. On
the strategic level, decisions are made for a long period of time and are
based on a large amount of data. The nature of the decisions is usually
speculative (e.g. what-if scenarios), and the cost of a wrong decision is
high. The tactical level acts as an intermediary between strategic and
operational levels. Tactical decisions usually consider a group of entities
and their co-operation, and, ultimately, the aim of tactical decisions is to
fulfil the plan made on the strategic level. Operational level is concrete
and closely connected to the properties of the game world. Although the
number of decision-making entities on this level is high, the decisions
consist of choosing short-term actions among a given set of alternatives.

Let us consider football as an example of the levels of decision-
making. On the strategic level, there are the choices of how to win the
game (e.g. whether to play offensively or defensively). On the tactical
level, the choices concern carrying out the strategy in the best possible
way (e.g. whether to use man-marking defence or space-marking
defence). On the operational level, the choices are simple and concrete
(e.g. where the player is to position himself and, if he has the ball,
whether to dribble it, kick it to the goal or pass it to another player). The
problem is how to choose what to do (i.e. decision-making) and on what
grounds (i.e. pattern recognition). It is fairly simple on the operational
level – dribble if you have an opening, pass if you can do it safely – but it
gets harder and harder as the level of abstraction rises.

Uses for the Modelled Knowledge
Based on the information provided by pattern recognition, the decision-
making system forms a model about the world. The complexity of the

HUMAN IT REFEREED SECTION

68

world can be simplified with generators, which label the events and states
with symbols. For example, the punches in a boxing game can go
through a generator that produces the symbols ‘jab’, ‘uppercut’, ‘cross’,
and ‘hook’. Now, we can construct a model for the behaviour of the
generator from the generated symbol sequence. Modelling recognizes the
underlying dependencies between symbols, which are typically stronger
between symbols that are close to each other. Often a short-term history
is sufficient, but the model gets more accurate if we increase the length of
the modelling context at the cost of run time.

We can use the model to imitate the actions of a human player
(Alexander 2002). For example, we can model the punch series of a real-
world boxer, and use the model when selecting the next punch for a
computer-controlled boxer. Of course we could construct the model
simply by observing the human opponent’s moves and start mimicking
them. In addition to imitation, the model can be used to predict what
will happen next. For example, if we have constructed a model of the
opponent’s punch series, we can compute the most likely punch the
opponent will throw next, and use this prediction to calculate an effect-
tive counteraction.

The model does not have to be confined only to the opponent and
the game world, but can cover the actions and reactions of the synthetic
player itself. Whenever the synthetic player makes a decision, the
outcome produces feed-back – positive or negative, direct or indirect –
which can be used in learning (Evans 2002). For example, in Black &
White (Lionhead Studios 2001) the computer-controlled pet creature
learns from other entities’ reactions, from feed-back from the human
player, or from its own experiences. Hence, the rule “Do not eat trees”
can be derived either from the villagers’ disapproval for wasting
resources, from a sharp slap by the owner, or from the resulting stomach-
ache.

Synthetic Player’s Behaviour
The game world is anthropocentric, because everything in it revolves
around the human player. Regardless of the underlying method for
decision-making, the synthetic player is bound to show certain behaviour
in relation to the human player, which can range from simple reactions

JOUNI SMED & HARRI HAKONEN

69

to general attitudes and even complex intentions. The list of features we
provide here is by no means comprehensive, but points out some details
that are relevant to the design of the synthetic player. These are the
things that a casual player is most likely to notice first, whereas the
structural details we discussed earlier are of more interest to the game
developers and programmers.

Humanness
The success of networked multiplayer games is partly due to the fact that
human players can provide something synthetic players still cannot:
human traits and characteristics. These include flaws as much as (or even
more than) strengths: fear, rage, compassion, hesitation, and emotions in
general. Even minor displays of emotion can make the synthetic player
appear more human. For instance, in Half-Life (Valve Software 1998)
and Halo (Bungie Software 2003), the synthetic players who have been
taken by surprise do not act in superhuman coolness but show fear and
panic appropriate to the situation. We, as human beings, are quite apt to
read humanness into the decisions even when there is nothing but naïve
algorithms behind them. Sometimes a game such as NetHack (DevTeam
2004) even gathers around a community that starts to tell stories of the
things that synthetic players have done and to interpret them in human
terms.

A computer game comprising just synthetic players could be as
interesting to watch as a movie or television show (Charles, Mead &
Cavazza 2002). In other words, if the game world is fascinating enough
to observe, it is likely that it is also enjoyable to participate in – which is
one of the key factors in games like The Sims (Maxis 2000) and Singles
(Rotobee 2004), where the synthetic players seem to act (more or less)
with a purpose and where a human player’s influence is, at best, only
indirect.

There are also computer games that do not have human players at all.
Already back in the 1980s Core War demonstrated that programming
synthetic players to compete with each other can be an interesting game
itself (Dewdney 1984). Since then some games have tried to use this
approach, but, by the large, AI programming games have been only by-
products of “proper” games. For example, Age of Empires II: The Age of

HUMAN IT REFEREED SECTION

70

Kings (Ensemble Studios 1999) includes a possibility to create scripts for
computer players, which allows for the organization of games where
programmers compete in creating the best AI script. The whole game is
then carried out by a computer while the humans remain as observers.
Although the programmers cannot affect the outcome during the game,
they are more than just enthusiastic watchers: they are the coaches and
the parents, and the synthetic players are the protégés and the children.

Stance
The computer-controlled player can have different stances (or attitudes)
towards the human player. Traditionally, synthetic player has been seen
only in the role of an enemy. As an enemy the synthetic player must
provide challenge and demonstrate intelligent (or at least purposeful)
behaviour. Although the enemies may be omniscient or cheat when the
human player cannot see them, it is important to maintain the illusion
that the synthetic player is at the same level as the human player.

When the computer acts as an ally, its behaviour must adjust to the
human point of view. For example, a computer-controlled reconnaiss-
ance officer should provide intelligence in a visually accessible format
rather than overwhelm the player with lists of raw variable values. In
addition to accessibility, the human players require consistency, and even
incomplete information (as long as it remains consistent) can have some
value to them. The help can even take the form of concrete operations as
in Battlefield: Vietnam (Digital Illusions 2004) where the computer-
controlled fellow-soldiers respond to the player’s commands.

The computer has a neutral stance when it acts as an observer (e.g.
camera director or commentator) or a referee (e.g. judging rule violations
in a sports game) (Siira 2004). Here, the behaviour depends on the
context and conventions of the role. In a sports game, for example, the
camera director program must heed the camera placements and cuts
dictated by the television programme practice. Refereeing provides
another kind of challenge, because some rules can be hard to judge.
Finally, non-player characters (NPCs) can be used to carry out the plot,
to provide atmosphere, or simply to act as extras. Nevertheless, as we
shall see next, they may have an important role in assisting immersion in
the game world and directing the game play.

JOUNI SMED & HARRI HAKONEN

71

Story-telling
Story-telling is not about actions but reasons for actions. Human beings
use stories to understand intentional behaviour and tend to “humanize”
the behaviour of the characters to understand the story (Spierling 2002).
While “traditional” story-telling progresses linearly, a game must provide
an illusion of free will (Costikyan 2002). According to Aylett &
Louchart (2003) computer games differ from other forms of story-telling
in that the story time and real time are highly contingent, whereas in
traditional story-telling forms (e.g. cinema or literature) this dependency
can be quite loose. Another differentiating factor is interactivity, which is
non-existent or rather restricted in other forms of story-telling. Brings-
jord (2001) lists four challenges to interactive story-telling: First, plot
and three-dimensional characters are not enough to produce a high-
quality narrative: there must be themes (e.g. betrayal, self-deception, love
or revenge) behind them. Second, something is needed to make sure the
story stays dramatically interesting. Third, apart from being robust and
autonomous, the characters (i.e. synthetic players) have to be memorable
personalities by themselves. Fourth, a character should understand the
players – even to the point of inferring other characters’ and players’
beliefs based on its own beliefs.

Anthropocentrism is not only reflected in the reactions but also in the
intentions of the synthetic players. As a form of entertainment, amuse-
ment or pastime, the intention of games is to immerse and engulf the
human player fully in the game world. This means that the human player
may need guidance whilst proceeding in the game. The goals of the game
can become blurred, and NPCs or events can lead the human players so
that they do not stray too far from the intended direction set by the
developers of the game. For this reason the game developers are quite
eager to include a story into the game. The usual approach to include
story-telling into commercial computer games is to have “interactive
plots” (International Game Developers Association 2004). A game may
offer only a little room for the story to deviate – as in Dragon’s Lair
(Sullivan Bluth 1989) where, at each stage, the players can choose from
several alternative actions, of which all but one lead to a certain death.
This linear plot approach is nowadays replaced by the parallel paths
approach, where the story-line is divided into episodes. The player has

HUMAN IT REFEREED SECTION

72

some freedom within the episode, which has fixed entry and exit points.
At the transition point the story of the previous episode is concluded,
and new story alternatives for the next episode are introduced.

Research on story-telling computer systems is mainly motivated by
the theories of Propp (1968), because they help to reduce the task of
story-telling to a pattern recognition problem; for example, see Fair-
clough & Cunningham (2002), Lindley & Eladhari (2002), and Peinado
& Gervás (2004). This pattern recognition approach can even be applied
hierarchically to different abstraction levels. Spierling et al. (2002)
decompose the story-telling system into four parts: story engine, scene
action engine, character conversation engine, and actor avatar engine.
These engines either rely on predefined data or act autonomously, and
the higher level sets the outline for the level below. For example, based
on the current situation the story engine recognizes an adaptable story
pattern and inputs instructions for the scene action engine to carry out.
This resembles the approach used in the Façade system (Mateas & Stern
2002), where a drama manager guides an autonomous simulation world
from above. In addition to these implementation-oriented approaches,
other methodological approaches to interactive story-telling have been
suggested in the fields of narratology and ludology, but we omit a
detailed discussion of them here.

The main problem of the often used top-down approach is that the
story-generating program must act like a human dungeon master. It
must observe the reactions of the crowd as well as the situation in the
game, and recognize what pattern fits the current situation: is the game
getting boring and should there be a surprising plot twist, or has there
been too much action, would the players like to have a moment’s peace
to rest and regroup? Since we aim at telling a story to the human players,
we must ensure that the world around them remains purposeful. We
have general plot patterns that we try to recognize in the history and in
the surroundings of a human player. This in turn determines how the
synthetic players will act.

Instead of a centralized and omnipotent story-teller or dominant
dungeon master, the plot could be revealed and the (autobiographical)
“story” of the game (as told by the players to themselves) could emerge
from the interaction with the synthetic players. However, this bottom-up

JOUNI SMED & HARRI HAKONEN

73

approach is, quite understandably, rarely used because it leaves the
synthetic players with a grave responsibility. They must provide a sense
of purpose in a world of chaos.

Concluding Remarks
The work on synthetic players is still in its early stages. At the moment,
the research efforts are mainly concentrating on the algorithmic and
methodological problems, which we discussed by analysing the synthetic
player’s structure. However, we predict a shift of interest to the beha-
vioural aspects of synthetic players, because they form the contact
between humans and computers playing the game. Without a doubt the
future promises us tougher challenges and meaner villains to beat, but
then again, this calls for a more meaningful co-operation as well as
coexistence with the synthetic players.

Jouni Smed has a Ph.D. in Computer Science from the University of Turku,
Finland. Currently he acts as a post-doctoral researcher at the Turku Centre
for Computer Science (TUCS) and lecturer at the Department of
Information Technology, University of Turku, Finland. His research interests
include algorithms and networking in computer games.
E-mail: jouni.smed@it.utu.fi
URL: http://staff.cs.utu.fi/staff/jouni.smed/

Harri Hakonen acts as a lecturer at the Department of Information
Technology, University of Turku, Finland. Apart from computer games, his
research interests include string algorithms and object orientation.
E-mail: harri.hakonen@it.utu.fi
URL: http://staff.cs.utu.fi/staff/harri.hakonen/

HUMAN IT REFEREED SECTION

74

References

alexander, thor (2002). “GoCap: Game Observation Capture.” AI Game Pro-
gramming Wisdom. Ed. Steve Rabin. Hingham, MA: Charles River Media. 579-589.

aylett, ruth & sandy louchart (2003). “Towards a Narrative Theory of
Virtual Reality.” Virtual Reality 7.1: 2-9.

bringsjord, selmer (2001). “Is It Possible to Build Dramatically Compelling
Interactive Digital Entertainment?” Game Studies 1.1.
<http://www.gamestudies.org/0101/bringsjord/> [2002-11-20]

bungie software (2003). Halo: Combat Evolved. Microsoft Games.

charles, fred, steven j. mead & marc cavazza (2002). “Generating
Dynamic Storylines Through Characters’ Interactions.” International Journal of
Intelligent Games & Simulation 1.1:5-11.
<http://www.scit.wlv.ac.uk/~cm1822/ijigs11.htm> [2004-11-18]

costikyan, greg (2002). “I Have No Words & I Must Design: Toward a Critical
Vocabulary for Games.” Computer Games and Digital Cultures Conference Proceedings.
Ed. Frans Mäyrä. Tampere, Finland. 9-33.

crawford, chris (1984). The Art of Computer Game Design. Berkeley, CA:
Osborne/McGraw-Hill.
<http://www.vancouver.wsu.edu/fac/peabody/game-book/Coverpage.html> [2004-11-
18]

devteam (2004). NetHack. <http://www.nethack.org> [2004-11-18]

dewdney, a. k. (1984). “Computer Recreations: In the Game Called Core War
Hostile Programs Engage in a Battle of Bits.” Scientific American 250.5: 14-22.

digital illusions (2004). Battlefield: Vietnam. Electronic Arts.

JOUNI SMED & HARRI HAKONEN

75

dybsand, eric (2004). “GDC 2004 AI Roundtables Moderator Report.”
<http://www.gameai.com/cgdc04notes.dybsand.html> [2004-11-18]

encyclopædia britannica (2004). "game." Encyclopædia Britannica Online.
<http://www.eb.com> [2004-04-23]

ensemble studios (1999). Age of Empires II: The Age of Kings. Microsoft Games.

evans, richard (2002). “Varieties of Learning.” AI Game Programming Wisdom.
Ed. Steve Rabin. Hingham, MA: Charles River Media. 567-578.

fairclough, chris & pádraig cunningham (2002). “An Interactive Story
Engine.” Proceedings of the 13th Irish International Conference on Artificial Intelligence
and Cognitive Science. Eds. Michael O’Neill et al. (Lecture Notes in Computer Science,
2464). Berlin: Springer. 171-176.

game developers’ association of australia (2003). “Game Industry Fact
Sheet.” <http://www.gdaa.asn.au/about/gdaaindustryfactsheetoct2003.pdf> [2004-02-
27]

graetz, j. m. (1981). “The Origin of Spacewar.” Creative Computing August: 56-67.
<http://www.wheels.org/spacewar/creative/SpacewarOrigin.html> [2004-10-14]

huizinga, johan (1955). Homo Ludens: A Study of the Play-Element in Culture.
Boston, MA: The Beacon Press.

international game developers association (2003). “IGDA Curriculum
Framework: The Study of Games and Game Development.”
<http://www.igda.org/academia/IGDA_Curriculum_Framework_Feb03.pdf> [2003-
08-05]

international game developers association (2004). “Foundations of
Interactive Storytelling.” <http://www.igda.org/writing/InteractiveStorytelling.htm>
[2004-09-17]

kaukoranta, timo, jouni smed & harri hakonen (2003). “Understanding
Pattern Recognition Methods.” AI Game Programming Wisdom 2. Ed. Steve Rabin.
Hingham, MA: Charles River Media. 579-589.

krasner, glenn e. & stephen t. pope (1988). “A Cookbook for Using the
Model-View-Controller User Interface Paradigm in Smalltalk-80.” Journal of Object-
Oriented Programming 1.3: 26-49.

HUMAN IT REFEREED SECTION

76

laird, john e. & michael van lent (2001). “Human-Level AI’s Killer Applica-
tion: Interactive Computer Games.” AI Magazine 22.2: 15-25.

lindley, craig a. & mirjam eladhari (2002). “Causal Normalization: A
Methodology for Coherent Story Logic Design in Computer Role-Playing Games.”
Proceedings of the Third International Conference on Computers and Games. Eds.
Jonathan Schaeffer, Martin Müller & Yngvi Björnsson. (Lecture Notes in Computer
Science, 2883). Berlin: Springer. 292-307

lionhead studios (2001). Black & White. Electronic Arts.

mateas, michael & andrew stern (2002). Architecture, Authorial Idioms and
Early Observations of the Interactive Drama Façade. (Technical Report CMU-CS-02-
198). Pittsburgh, PA: School of Computer Science, Carnegie Mellon University.

maxis (2000). The Sims. Redwood City, CA: Electronic Arts.

peinado, federico & pablo gervás (2004). “Transferring Game Mastering
Laws to Interactive Digital Storytelling.” Technologies for Interactive Digital Storytelling
and Entertainment. Eds. Stefan Göbel et al. (Lecture Notes in Computer Science,
3105). Berlin: Springer. 48-54

propp, vladimir (1968). Morphology of the Folktale. Austin, TX: University of Texas
Press.

relic entertainment (1999). Homeworld. Bellevue, WA: Sierra Studios.

rotobee (2004). Singles: Flirt Up Your Life. Deep Silver.

salen, katie & eric zimmerman (2004). Rules of Play: Game Design
Fundamentals. Cambridge, MA: MIT Press.

siira, antti (2004). Automatic Commentators. Master’s thesis. Turku: Department of
Information Technology, University of Turku.

smed, jouni, timo kaukoranta & harri hakonen (2002). “Aspects of
Networking in Multiplayer Computer Games.” The Electronic Library 20.2: 87-97.

smed, jouni & harri hakonen (2003). “Towards a Definition of a Computer
Game.” (Technical Report, 553). Turku: Turku Centre for Computer Science.

smed, jouni, timo kaukoranta & harri hakonen (2003). “AIsHockey – A
Platform for Studying Synthetic Players.” Proceedings of the 2nd International Conference

JOUNI SMED & HARRI HAKONEN

77

on Application and Developments of Computer Games. Ed. Loo Wai Sing, Wan Hak Man
& Wong Wai. Hong Kong. 183-188.

spierling, ulrike (2002). “Digital Storytelling.” Computers & Graphics 26.1: 1-2.

spierling, ulrike et al (2002). “Setting the Scene: Playing Digital Director in
Interactive Storytelling and Creation.” Computers & Graphics 26.1: 31-44.

sullivan bluth (1989). Dragon’s Lair. ReadySoft.

valve software (1998). Half-Life. Sierra Studios.

