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Predicting the Benefit of Rule Extraction 
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Tuve Löfström & Ulf Johansson  

When performing data mining, the selection of data mining technique is a 
critical decision. Often this choice boils down to whether a transparent model 
is needed or not. Most research indicates that techniques producing trans-
parent models, such as decision trees, often have an inferior accuracy 
compared to techniques such as neural networks. On the other hand, models 
created by neural networks are opaque, which must be considered a serious 
drawback as they are to be used for decision making. As an alternative, many 
researchers have tried to reduce this accuracy vs. comprehensibility trade-off 
by converting the opaque, high accuracy model into a transparent model – a 
technique termed rule extraction. In this paper, the question addressed is 
whether it is possible to predict, from the characteristics of a data set, if rule 
extraction is likely to produce an accurate model. The somewhat surprising 
answer, found from an empirical study conducted on several publicly 
available data sets, is that it is possible using only a few data set features. In 
addition, the study shows that the chosen representation is very important for 
the success of rule extraction. The results should be seen as steps in a direction 
towards a more automated data mining process. The overall ambition is to 
reduce the need for critical decisions having to be made early in the process 
and in an ad-hoc fashion. 

 

Background  
Modern computer technology enables the storing of huge amounts of 
data at a moderate cost. While most data is not stored with predictive 



TUVE LÖFSTRÖM & ULF JOHANSSON 

79 

modeling or analyzing in mind, the collected data could contain 
potentially valuable information. Having a strategy for using the stored 
data to extract hidden information would typically be beneficial for a 
company or organization.  

The activity of transforming collected data into actionable informa-
tion, often termed data mining, is therefore increasingly becoming 
recognized as an important activity for companies as well as for other 
organizations. Although several definitions of data mining exist, they are 
quite similar. Berry and Linoff (1997, 5) use the following definition: 

 
Data mining is the process of exploration and analysis, by automatic or 
semi-automatic means, of large quantities of data in order to discover 
meaningful patterns and rules. 

 
The overall purpose of data mining is to support decision making by 

turning collected data into actionable information. A very rough sketch 
of the data mining process thus consists of data (input), the data mining 
activity itself, and information (output). 

Data mining is used in many different domains so the nature of 
information found could be extremely varying. One typical example is a 
medical system where a diagnosis is suggested based on previous similar 
cases. Another example is a marketing system, where potential customers 
are mechanically selected for a promotion including an offer of a new 
service. The purpose of such a system could be to rank the recipients 
according to how likely they are to respond positively to the offer, 
leading to a targeted marketing effort. Obviously the system would use 
information on how the customers have responded previously to similar 
offers, if such data is available. More likely, though, the system would 
have to be built in accordance with the manner in which typical custom-
ers have previously replied to comparable offers. The problem is thus to 
find a general model.    

Although data mining is widely used, and although there exist several 
integrated “off the shelf” data mining software tools, there is no standard 
system or dominating method. As a matter of fact, researchers (both 
from academia and business) constantly suggest improved or even novel 
techniques. 
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At the same time, there is strong agreement among both researchers 
and executives about the criteria that all data mining techniques must 
meet. Most importantly, the techniques must have high performance. 
This criterion is, for predictive modeling, understood to mean that the 
technique should produce models that are likely to generalize well, thus 
showing good accuracy when applied to novel data. At the same time, the 
comprehensibility of the model is also very important, since the results 
should typically be interpreted by a human. Traditionally, most research 
papers focus on high accuracy, although the comprehensibility criterion 
is much emphasized by business representatives (see e.g. Berry & Linoff 
2000). 

In a description of an embryo to a standardized data mining method 
called CRISP-DM1 (The CRISP-DM consortium 2000), the advantage 
of having “a verbal description of the generated model (e.g. via rules)” is 
pointed out, thus acknowledging the importance of comprehensibility. 
Only with this description is it possible to “assess the rules; are they 
logical, are they feasible, are there too many or too few, do they offend 
common sense?” 

It must be noted that the comprehensibility issue is tightly connected 
to the choice of data mining technique. Some techniques, such as 
decision trees and linear regression, are regarded as transparent,2 i.e. allo-
wing human inspection and understanding. Other techniques, most 
notably neural networks, are said to be opaque and must be used as black 
boxes. However, these common descriptions are too simplified. Compre-
hensibility, at least, also depends on the size of the model. For example, 
the comprehensibility of an extremely bushy decision tree is question-
able. 

The standard techniques arguably showing the highest accuracy in 
most cases are neural networks and ensemble methods like boosted 
decision trees (cf. e.g. Shavlik, Mooney & Towell 1991). Neither of 
these techniques, in general, produces comprehensible models. On the 
other hand, more transparent models such as decision trees sometimes 
generalize badly for complex problems, leading to poor accuracy. From 
this it seems inevitable that the choice of technique is a direct trade-off 
between accuracy and comprehensibility. 
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With this trade-off in mind, several researchers have tried to bridge 
the gap by introducing techniques for converting opaque models into 
transparent models, while maintaining an acceptable accuracy. Most 
significant are the many attempts to extract rules from trained neural 
networks. This process of converting opaque models into transparent 
models is often called rule extraction.  

Although the main purpose of rule extraction is to enable 
comprehensibility, and this normally leads to a loss of accuracy, an inte-
resting question is whether the accuracy of the extracted model is higher 
or lower compared to a transparent model (e.g. a decision tree) generated 
directly from the data set. Many studies show that the extracted model in 
fact often has higher accuracy, when compared to the transparent model 
generated from the data set (see e.g. Dorado et al. 2002; Craven & 
Shavlik 1997; and Johansson, König & Niklasson 2004). If this was 
always true, there would be no reason to choose a less accurate technique 
just to obtain transparent models. A model created by a high accuracy 
technique, followed by rule extraction, would have higher performance 
(measured as accuracy and comprehensibility) than transparent models 
built directly from the data set. 

It must be noted that this paper does not address the question of how 
to make sure that extracted representations are in fact comprehensible, 
although this is a very interesting topic. Naturally the argument used 
against bushy decision trees could be applied here as well. Transparency 
without comprehensibility is often of limited value in the data mining 
domain. Accordingly, we strongly believe that the ability to produce 
compact representations is a key property of any rule extraction algo-
rithm. As a matter of fact, in our rule extraction algorithm G-REX, 
which uses genetic programming as extraction strategy, the accuracy vs. 
comprehensibility trade-off is explicitly handled to guarantee compact 
yet accurate rules. More specifically, the fitness function guiding the 
search includes components balancing accuracy and complexity. For 
details about G-REX see the original paper (Johansson, König & Niklas-
son 2003). 

The reason why there exists no standard tool might partly be the fact 
that the data mining task is quite complex. Often the characteristics of 
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the problem (both the data set and the task) determine which data 
mining technique is most suitable.  

Much research in the metalearning community has been directed at 
finding techniques generally suitable for specific problem characteristics 
(see e.g. Kalousis, Gama & Hilario 2004; and Brodley 1994). In this 
research, many interesting and valuable findings have been made. Some 
of these results could be used directly in a general purpose tool, but some 
areas remain unexplored. One such area is to examine which types of 
data sets are suitable for rule extraction and which are not. Or put 
another way: is it possible for the data miner to know just from the 
characteristics of a data set whether rule extraction will increase the 
accuracy, compared to a transparent model generated directly from the 
data set?  

Purpose and Motivation 
The overall purpose of this study is to explore if it is possible to predict if 
a problem is suitable for rule extraction, by examining the characteristics 
of the data set. To determine if a data set is suitable for rule extraction, a 
comparison of accuracy is made between rules extracted from an opaque 
model (method 1) and rules created directly from the data set (method 
2).  

 
• Method 1: A high accuracy technique is used to produce 

an opaque model from the data set. Rule extraction is 
then performed on the opaque model to generate the 
final transparent model. 

• Method 2: A transparent model is generated directly 
from the data set. 

 
For each data set (and representation)3 a large number of model pairs are 
built using the methods described above. For each pair the most accurate 
model is deemed the winner. If a majority of winners come from Method 
1, that data set (using that representation) is considered suitable for rule 
extraction.  

The implicit situation is that a data miner, for some specific task, 
needs a transparent model. With this assumption the question becomes: 
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Is it possible to mechanically determine, from the characteristics of the data 
set, whether rule extraction normally will produce a more accurate model, 
when compared to a model created directly from the data set? 

Obviously this would be very beneficial since the choice of technique 
in that case would be more or less automated. More specifically, the 
accuracy vs. comprehensibility trade-off would be reduced and the 
suggested setup (a high accuracy technique followed by rule extraction) 
could be considered a good general-purpose data mining tool. 

Data Mining 
Data mining, as described above, is actually part of a larger process called 
the “virtuous cycle of data mining” (Berry & Linoff 1997), see Figure 1. 
To realize the full potential of the techniques, the data mining activity 
must be part of a company’s strategy, i.e. data mining should typically be 
considered as part of the customer-relationship management. 

 

Transform data into 
actionable 

information using 
data mining 
techniques

Identify business 
problems and 
areas where 

analyzing data can 
provide value

Act on the 
information

Measure results of 
efforts to provide 
insight on how to 
exploit the data

 
 

Figure 1. Virtuous cycle of data mining (from Berry & Linoff 1997). 
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Whether the term “data mining” should be used for the entire virtuous 
cycle or just the “transform data into actionable information” step is a 
matter of taste, or more correctly, it depends on the abstraction level of 
the observer. In this paper, “data mining” mainly refers to applying 
different data mining techniques, but the business context and its 
demands are also recognized. More specifically, the fact that results from 
data mining techniques ultimately should be used by human decision 
makers places some demands on the data mining techniques themselves.  

One particular and important demand, arguably also following from 
the fact that most business executives are still unfamiliar with data 
mining and data mining techniques, is that transparent models are 
preferred to black-box models. Black-box models are models that do not 
permit human understanding and inspection, while transparent methods 
produce explanations of their inner workings.  

The purpose of a data mining effort is normally either to create a 
descriptive model or a predictive model. A descriptive model presents, in 
concise form, the main features of the data set. It is essentially a summary 
of the data points, making it possible to study the important aspects of 
the set. Typically a descriptive model is found through undirected data 
mining, i.e. a bottom-up approach where the data “speaks for itself”. 
Undirected data mining finds patterns in the data set but leaves the 
interpretation of the patterns to the data miner. The data miner must 
also determine the usability of the patterns found. The most 
characteristic descriptive modeling task is clustering, i.e. decomposing or 
partitioning a data set into groups so that points inside a group are 
similar to each other and as different as possible from points in other 
groups. There are many books and papers examining the concept of 
clustering. Jain & Dubes (1988) provide a thorough treatment of 
clustering algorithms and application domains. The purpose of a 
predictive model is to allow the data miner to predict an unknown (often 
future) value of a specific variable, the target variable. The predictive 
model is created from given known values of variables, possibly including 
previous values of the target variable. Figure 2 shows how the data 
mining algorithm uses available data to create a model. The model is 
then fed novel data to produce the prediction. 
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Figure 2. Predictive modeling. 

 
Most often a predictive model is found from directed data mining, i.e. a 
top-down approach where a mapping from a vector input to a scalar 
output is learnt from samples. The training data thus consists of pairs of 
measurements, each consisting of an input vector x(i) with a 
corresponding target value y(i). The predictive model is an estimation of 
the function y=f(x;θ) that can predict a value y, given an input vector of 
measured values x and a set of estimated parameters θ for the model f. 
The process of finding the best θ values is the core of the data mining 
technique. The two most important tasks for predictive modeling are 
classification and regression. 

Predictive classification modeling deals with the case where the target 
is a categorical variable C. The target variable C is normally called the 
class variable and takes values in the set {C1, C2,…,Cn}. Classification thus 
consists of learning the mapping from an input vector of measurements x 
to a categorical variable C. The input variables x1, x2,…, xp are variously 
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referred to as features, attributes, explanatory variables and so on. Each 
feature can be real-valued, ordinal, categorical etc. 

In predictive regression modeling the target is a real-valued variable. 
The problem is very similar to classification modeling, since the only 
difference is the numerical, rather than nominal, nature of the target 
variable. On the other hand, different measurements are used to deter-
mine the accuracy of classification and regression models, i.e. the score 
functions are different.  

It should be noted that the purpose of all predictive modeling is to use 
the model on novel data (a production set). It is therefore absolutely vital 
that the model is general enough to permit this. One particular problem 
is that of overfitting, i.e. when the model is so specialized on the training 
set that it performs poorly on unseen data.  

Naturally, descriptive models and predictive models could (and often 
should) be used together in data mining projects. As an example, it is 
often useful to first search for patterns in the data using undirected 
techniques. These patterns can suggest segments and insights that im-
prove the direct modeling results. 

Learning Techniques  
Many techniques for learning exist. The techniques described below are 
the techniques used in the experiments. The specific technique described 
in the section Strategies to increase generalization is a recent technique, 
inspired by existing methods for enhancing the generalization ability (for 
details see Löfström & Odqvist 2004). 

Neural Networks 
Artificial neural networks (ANNs) are highly parameterized models, 
loosely based on the function of the human brain. ANNs have proved to 
be successful in numerous data mining and decision support applica-
tions, as well as in many other areas. ANNs are considered to be very 
powerful, general-purpose and readily applicable to predictive regression 
and classification. 

From a high level point of view, ANNs used for prediction utilize 
examples to establish a functional mapping between input and output. 
The function is realized by an architecture or topology (the number of 
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units used and how they are connected) and a set of weights, i.e. how 
much adjacent neurons tend to activate or deactivate each other. The 
architecture is normally chosen before experimentation starts, but the 
weights are calculated during learning. For obvious reasons, this supervi-
sed learning is often called training. The purpose of training is to adjust 
the weights to minimize the error function over the training set. There 
are many different learning algorithms for different architectures. Once 
the network is fitted to the training set, it may be regarded as a function 
mapping an input pattern to an output and could be used on novel data. 
If the ANN is good at generalization, it should produce reasonable 
outputs when presented with previously unseen input patterns. For a 
more detailed description of Neural Networks, see any introductory text, 
e.g. Haykin 1999. 

Decision Trees 
Decision trees is a predictive modeling technique most often used for 
classification. Decision trees partition the input space into cells where 
each cell belongs to one class. The partitioning is represented as a 
sequence of tests.  Each interior node in the decision tree corresponds to 
one test of the value of some input variable, and the branches from the 
node are labeled with the possible results of the test. The leaf nodes 
represent the cells and specify the class to return if that leaf node is 
reached. The classification of a specific input tuple is thus performed by 
starting at the root node and, depending on the results of the test, 
following the appropriate branches until a leaf node is reached.  

The decision tree is created from examples (a training set) with the 
obvious requirement that it should have high accuracy on the training 
set. The basic strategy for building the tree is to recursively split the cells 
of the input space. To choose the variable and threshold on which to 
split, a search across possible input variables and thresholds is performed 
to find the split that leads to the greatest improvement of a specified 
score function. Typically this score function is based on some 
information theory measurement, such as information gain or entropy. 
The overall idea is to minimize the depth of the final tree by always 
choosing splits that make the most difference to the classification of a 
tuple. The splitting procedure could in principle be repeated until each 
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cell contains tuples from one class only. At the same time, the decision 
tree must not simply memorize the training set, but should be capable of 
generalizing to unseen data, i.e. the decision tree should not overfit. The 
goal is thus to have a decision tree as simple (small) as possible, but still 
representing the training set well. 

Two basic strategies for avoiding overfitting is to stop growth of the 
tree when some criterion has been met, or to afterwards reduce (prune) a 
large tree by iteratively merging leaf nodes.  

Classification and regression trees (CART) (Breiman et al. 1984) is a 
technique that generates binary decision trees. Each internal node in the 
tree specifies a binary test on a single variable, using thresholds on real 
and integer-valued variables and subset membership for categorical 
variables. Entropy is used as a measure for choosing the best splitting 
attribute and criterion. The splitting is performed on what is determined 
to be the best split point. At each step, an exhaustive search is used to 
determine the best split. For details about the function used to determine 
the best split, see Breiman et al. 1984. The score function used by CART 
is misclassification rate on an internal validation set. CART handles 
missing data by ignoring that tuple in calculating the goodness of a split 
on that attribute. The tree stops growing when no split will improve the 
performance. CART also contains a pruning strategy which can be found 
in Kennedy et al. 1998. 

Cross Validation 
As mentioned above, an important problem when creating models by 
learning from a data set, is the risk of overfitting. If a neural network or 
decision tree is allowed to learn the training data too well, it will not be 
able to generalize properly to unseen data. To avoid this, a statistical tool 
called cross validation is often used. When cross validation is used, the 
data set is divided into three disjoint subsets: 
 

• training subset (used to train the model) 
• validation subset (used to test or validate the model while 

training) 
• test subset (used to evaluate the final model)  
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Cross validation is normally performed by repeatedly evaluating the 
current model against the validation set during training. When training 
has reached a certain point, it begins to learn details specific to the 
training data. Up to that point the validation error decreases, but when 
learning of overly specialized details in the training data begins, the 
validation error will start to increase. If training is stopped at the correct 
time (i.e. just before the validation error starts to increase) the result is a 
model likely to generalize well.  

It should be noted that the generalization performance is ultimately 
measured on the test set. If the accuracy on the test set is close to that of 
the validation set, this is a strong indication that the model is general 
enough. 

When there are few instances in the data set, multifold cross-
validation is often a good solution. The basic idea is to estimate how well 
a model will predict unseen data. This is done by setting aside some 
fraction of the data and using it to test the prediction performance of the 
model generated from the rest of the data. K-fold cross-validation means 
that k experiments are run, each time setting aside 1/k of the data to test 
on. The final result is the average from the experiments. This is a 
standard procedure having the additional benefit of making results from 
different studies (using common data sets) comparable.  

A special case of the multifold cross validation is called leave-one-out 
cross validation. When leave-one-out cross validation is used, k is set to 
be equal to the number of data points, i.e. there are as many experiments 
as there are data points and in each experiment only one data point is 
used as test set.  

Strategies to Increase Generalization 
A strategy that has been used, primarily when building decision trees, is 
to select a subset of the training data and use only this subset for training 
of the model. The model is then evaluated against the remainder of the 
training data. The training instances that are incorrectly classified are 
moved to the training subset, and the model is retrained. This procedure 
is repeated until all the data in the remainder of the training data is 
correctly classified, or all the available data is used for training (Roiger & 
Geatz 2003). The basic idea of this strategy is that misclassified instances 



HUMAN IT REFEREED SECTION 

90 

contain some valuable information, and use of this information will 
produce a more general model.  

The generalization strategy used in this study was developed by 
Löfström & Odqvist (2004), and is a variant of the generic strategy 
described above. Here the subset used for training is fixed and selected in 
advance. The remainder is used as a validation set. A trained model is 
evaluated against the validation set after each training. Instances incorrec-
tly classified are moved from the validation set to the end of the training 
set. At the same time, an equally sized set of instances is moved back 
from the beginning of the training set to the validation set before the 
model is retrained. This is repeated until all the instances in the 
validation set are correctly classified or a selected number of iterations 
have been completed.  

Committee Machines 
This section presents different methods for combining several so called 
experts (neural networks, decision trees, or some other kind of learning 
algorithms) to reach a better overall decision. Such combinations of 
experts are called committee machines, a common tool to obtain more 
general models. A brief description of ensemble methods and boosting 
methods is presented below. 

Ensemble Methods 
When using an ensemble, several independent experts are trained on the 
same set of data. The outputs from the different experts are combined to 
produce an overall output. The expectation is that the differently trained 
experts converge to different local error minima and the overall perform-
ance is improved by combining the outputs in some way. The most 
obvious way of combining the results is to average the result from the 
different experts. Another popular method is to let the experts “vote”. 
Each expert could have exactly one vote or the votes could be weighted, 
typically in relation to obtained accuracy on the training data. Yet 
another way is to first select a subset of experts, typically the “best ones”, 
before applying one of the combining methods described above. 
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The experts in ensembles could be homogeneous (like a set of neural 
networks) or a collection of experts using different learning algorithms, 
for instance neural networks and decision trees together.  

Boosting 
The experts in ensembles are trained on the same set of data. In a 
boosting machine, the experts are trained on data sets with different 
distributions. Boosting can be used to improve the performance on any 
learning algorithm. The original idea of boosting was described by 
Schapire (1990) and was called boosting by filtering. In boosting by 
filtering, the committee machine consists of three experts or sub-
hypotheses. The first and second experts are trained on disjoint sets of 
training data. The third expert trains on a third training set that is built 
by selecting only those instances that the first and second experts disagree 
on. 

When the boosting committee machine is evaluated against unseen 
data, it can draw its conclusions either by voting or averaging. The 
voting in boosting by filtering committee machines is performed in 
much the same way as the filtering of the third set. If both the first and 
second experts agree, that class label is used, otherwise the class label 
discovered by the third expert is used.  

A very common technique, suggested by Freund & Schapire (1996) is 
called AdaBoost. The AdaBoost algorithm combines the predictions of 
several weak classifiers (i.e. a classifier with hypothesis slightly better than 
random guessing) into one with very good accuracy. For a detailed 
description of the algorithm see the original paper. 

Rule Extraction 
As described in the introduction, the purpose of rule extraction is to 
transform an opaque model into a transparent model. Rule extraction is 
typically performed using one of two strategies, called black box and open 
box. 

Rule extraction techniques using the open box strategy are less general 
than black box techniques. Each method is restricted to extract models 
from a specific type of opaque model, most often a certain type of neural 
network. In addition, rules can only be extracted from single models, not 



HUMAN IT REFEREED SECTION 

92 

from any kind of committee machines. An open box technique, when 
applied to a neural network, typically works by extracting rules for each 
layer and finally combining these rule sets into one rule describing the 
model the neural network has created. The way different methods create 
their local rules for each layer differs, but typically the weights of each 
layer are used in some way to create the rules. The RX algorithm by Lu, 
Setino & Liu (1995) is a typical example of an open box rule extraction 
algorithm. 

A rule extraction technique using the black box strategy, on the other 
hand, directly creates a function describing the output in terms of the 
input. Typically some symbolic learning algorithm is used on the train-
ing examples generated by the opaque model, i.e. the purpose of the rule 
extraction algorithm is to find and express the function between input 
and output learned by the opaque model, see Figure 3.   
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Figure 3. Black box rule extraction. 

 
There are several black box rule extraction techniques, e.g. TREPAN 
(Craven 1996) and G-REX (Johansson 2004). It must be noted, 
however, that every learning technique creating transparent models 
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mapping input to output (expressed in original variables) could be 
regarded as a black box rule extraction technique. With this viewpoint, 
decision tree algorithms like CART could be used for rule extraction, 
even though they are not originally intended for that use. 

Meta Learning 
Meta learning is concerned with the task of discovering general insights 
about different problems and learning techniques. Several previous 
studies have compared many learning techniques on numerous problems 
and analyzed the results from different angles (see e.g. Lim, Loh & Shih 
2000). Most studies have focused on the relative performance of the 
learning techniques, but Kalousis, Gama & Hilario (2004) go one step 
further when they try to find similarities between both learning 
techniques and data sets. Brodley (1994) shows in her dissertation that 
different learning techniques are superior for different problems.  

Characteristics of Data Sets 
All data sets have a number of characteristics that can be represented in 
different ways. Among those characteristics are: 
 

• the number of classes and the distribution of instances in 
these classes 

• the number of instances 
• the number of categorical variables 
• the number of continuous variables 
• the total number of variables 
• some kind of measure of how much each variable 

contributes to explain the output 
 
Kalousis, Gama & Hilario (2004) used the characteristics shown in 
Table 1. 
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Characteristic Symbol 
Lg # Instances LgI 
Lg (# Instances / # Variables) LgRIV 
Lg (# Instances / # Classes) LgRIC 
% of Symbolic (Categorical) Variables PSV 
% of Missing Values PMV 
Class Entropy CE 
Normalized Class Entropy NCE 
Median of the Uncertainty Coefficient MedUC 

 
Table 1. Data set characteristics 

 
The Logarithm of the number of Instances (LgI) is a raw indication of 
the available amount of training data. The Logarithm of the Ratio of 
Instances to Variables (LgRIV) is a rough indicator of the dimensionality 
of the problem. The Logarithm of the Ratio of Instances to Classes 
(LgRIC) is an approximation of the average number of examples 
available per class (under the assumption that examples are uniformly 
distributed among classes). PSV gives the proportion of categorical 
variables. PMV gives the percentage of missing values, which could be 
seen as a measure of the quality of the data. Class Entropy (CE) gives an 
indication of the number of classes, and the distribution of instances in 
these classes. The problem with CE is that there is no fixed upper bound; 
its upper bound depends on the number of classes. As a result, a high 
value of CE can represent both a large number of classes and/or an 
uneven class distribution. NCE is used to pinpoint the exact cause of a 
high value of CE. NCE is simply CE/lg(C) and is bounded above by 
one. A value close to one indicates an even class distribution and a value 
close to zero indicates uneven class distribution. The Median of the 
Uncertainty Coefficient, MedUC, indicates how much information each 
individual variable contains about the class variable. The Uncertainty 
Coefficient, UC (X, Y), between a variable X and the target variable Y is 
the mutual information between the two variables, divided by the 
entropy of the target variable Y, when X is known. 
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Similar characteristics have been suggested by Michie, Spiegelhalter & 
Taylor (1994), and have been used in other studies, e.g. Gama & Brazdil 
1995. 

Data Representation 
The data can be represented in several different ways. The chosen repre-
sentation plays an important role when training. As a matter of fact, a 
problem domain can often be represented in several different ways. One 
real-world example where the representation makes a difference is the 
problem of finding genes in DNA. Craven & Shavlik (1995) showed 
that the way the domain knowledge about genes is coded did make a 
difference. Their study showed that when the input was coded as 
nucleotides it was much harder to obtain good accuracy compared to 
input coded as codons.  

Even without domain knowledge, data can be represented in different 
ways. The most obvious example is that individual variables (both conti-
nuous and categorical) can be coded in different ways. 

We will present a few ways of representing data that are possible to 
use for all categorical and continuous variables. The different represen-
tations all split a single variable into several new variables that represent 
the original variable. By using more variables to represent the data set, 
learning techniques might find it easier to identify and learn interesting 
combinations of values. 

Often categorical data is represented by different classes, each with a 
unique identifying label or number. An alternative way of representing 
categorical data is to divide it into as many binary variables as there are 
classes. Each binary variable will thus represent one class. 

It could be noted that it is the ordering between the values that make 
a variable continuous, not whether it is numerical or not. With this in 
mind it is possible to use a similar representation for continuous 
variables. Obviously continuous variables normally take on a huge 
number of different values, and in such cases it is necessary to group the 
values and create a binary variable for each group. The way the groups 
are formed can affect the quality of the data. The easiest way to group 
values is to make equal-sized intervals and let every interval be a group. If 
only a small interval of the variable is of interest, however, this grouping 
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technique might lead to loss of information. A more complicated 
technique, to avoid this loss of information, is to find dynamic intervals, 
tailored for the specific problem. 

Data Sets 
The data sets used in this study are all publicly available and were 
gathered from the UCI Repository (Blake & Merz 1998), see Table 2.  
 

Categorical 
Data sets Size # Classes Cont 2 3 4 5 6 7 8 9 10 11 14 22 25 26 TotCat Tot 

Anneal 798 6 6 19 4 3 2 2     1 1           32 38 
Auto 205 7 15 4 1   1   3 1         1     11 26 
Breast 699 2 9                             0 9 
Bupa 345 2 6                             0 6 
Cleve 303 2 6 3 3 1                       7 13 
Cmc 1473 3 2 3   4                       7 9 
Crx 690 2 6 4 3           1     1       9 15 
German 1000 2 7 2 3 3 4           1         13 20 
Glass 214 7 9                             0 9 
Hepati 155 2 6 13                           13 19 
Horse 368 3 7 2 4 5 2 1                   14 21 
Iono 351 2 34                             0 34 
Iris 150 3 4                             0 4 
Labour 57 2 8 3 5                         8 16 
Led7 3200 10 0 7                           7 7 
Lymph 148 4 3 9 2 3       1               15 18 
Pima 768 2 8                             0 8 
Sat 6435 6 36                             0 36 
Seg 2310 7 19                             0 19 
Sick 2800 2 7 21       1                   22 29 
Sonar 208 2 60                             0 60 
Tae 151 3 1 2                       1 1 4 5 
Tic-tac 958 2 0   9                         9 9 
Vehicle 846 4 18                             0 18 
Waveform 5000 3 21                             0 21 
Wine 178 3 13                             0 13 
Zoo 100 7 0 15       1                   16 16 

 
Table 2. Description of data sets  

 
Size is the number of instances in the data set. # Classes is the number of 
output classes in the data set. Cont is the number of continuous input 
variables. The columns under the categorical label represent how many 
categories each categorical input variable has, and the numbers in the 
table are the number of variables with the given number of categories. 
TotCat is the total number of categorical input variables and Tot is the 
total number of input variables. 
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Method 
Since the chosen representation might influence the suitability of rule 
extraction, two different representations were evaluated in this study. 
The first representation, called Original, used all input data in the form it 
was originally represented. The second representation, called Recoded, 
used input data recoded into binary form. The continuous variables were 
divided into 10 equal sized intervals prior to the transformation into 
binary form.  

When selecting the learning techniques, some criteria had to be 
applied. Since the study aims at investigating the general question of 
whether it is possible to predict if a data set is suitable for rule extraction, 
learning techniques that would perform well on many data sets were 
needed. The selected techniques range from single neural networks and 
decision trees to different forms of committee machines, including 
ensembles and boosting machines. The range is believed to represent 
both more common as well as more specialized learning techniques. 

The selected learning techniques are presented in Table 3. The 
selected learning techniques will be referred to as the techniques in the 
succeeding text.  
 

# Name # Experts Type of Expert 
T1 Committee 5 Neural network 
T2 Cross validation committee 5 Neural network 
T3 Boosting by filtering 3 Committee of 3 neural networks 
T4 Generalization committee 5 Neural network 
T5 Decision tree 1 CART 
T6 Neural network 1 Neural network 

 
Table 3. Techniques used in experiments   
 
All neural networks were feed-forward neural networks with one hidden 
layer. The number of nodes in the hidden layer was based on the results 
from an initial test for each data set. The training algorithm used was the 
default algorithm for feed-forward neural networks in Matlab’s neural 
network toolbox. The sigmoid function was used as transfer function. 
CART was used with the default settings implemented in Matlab’s 
statistical toolbox. 
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Basic Setup 
The basic setup was equal for all data sets and consisted of two phases 
described in the two following sub-sections.  

Comparing Rule Extraction with Transparent Techniques 
Each data set was initialized so that two representations of the data set 
were created. Each data set representation was divided into three sets: a 
training set (including an early stopping validation set), an independent 
validation set and a test set. Fifty cycles of training were performed. 
Every cycle operated on a unique distribution of data, i.e. all three sets 
were rearranged for every cycle. In each cycle, the two representations of 
the data set were trained with all six methods, resulting in 12 trained 
models, see Table 4.  

 
R1+T1 R1+T2 R1+T3 R1+T4 R1+T5 R1+T6 
R2+T1 R2+T2 R2+T3 R2+T4 R2+T5 R2+T6 

 
Table 4. Scheme of trained models in a cycle 

 
Each of the 12 models in a cycle produced a predicted output. The 
predicted output and the original output were used to compare the 
model and the data. The comparison was performed as follows: 

 
1. Train a model on original output with CART and save 

the result. (TransparentAcc) 
2. Train a model on predicted output with CART and save 

the result. (ExtractionAcc) 
 
CART was preferred to methods intended as rule extractors mainly 
because it was available in the experimentation environment. 
Nevertheless, the choice to use the same technique both as transparent 
learning technique and rule extractor also means that the resulting 
difference in accuracy must be due to the different outputs used, i.e. the 
original output and the prediction from the opaque model.  
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Analyzing Data Set Characteristics 
When phase one was finished for all data sets, the second phase began. 
Each data set was analyzed and the criteria for each one were measured. 
All the criteria mentioned in the section on Characteristics of data sets 
were used (except PMV due to lack of information about missing data 
for some of the data sets). PSV, LgRIV and medUC varied for the 
different representations of each data set. At the same time as these 
criteria were calculated, a dependent variable, i.e. output, was also 
calculated.  

When calculating the output, comparisons between each pair of 
extracted model and transparent model were carried out, using the 
ExtractionAcc and TransparentAcc described above. If ExtractionAcc 
was higher than TransparentAcc, then the opaque model from which the 
extraction was done was considered a suitable model. 

As a consequence of the definition of a suitable data set (see Purpose 
and motivation), those representations4 with more than 50 % of suitable 
models were considered suitable for rule extraction. The output was set 
as a binary variable where all suitable data sets were represented as 1 and 
all unsuitable data sets as -1. 

As a result of the second phase, 27 instances of data for each repre-
sentation, describing each data set, had been created.  

Two different sets of output were created for each representation. The 
first only considered the best opaque model per cycle for a particular 
representation (measured on the validation set), resulting in 50 models 
per representation. In the second set all models were considered, i.e. 300 
models, 50 cycles and models from 6 methods in each cycle. They will be 
called, respectively, the best selection and all models.  

Predicting Data Sets Suitable for Rule Extraction 
The actual prediction of whether or not a data set is suitable for rule 
extraction, could obviously be done in several ways. To make the model 
easy to interpret, CART was again chosen as learning technique. CART 
was used with the default settings as implemented in Matlab 7.0. The 
only parameter that was altered was the minimum split condition.  

The criteria that were used as input were the criteria described in the 
section on Characteristics of data set above. The problem was evaluated 
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with the leave-one-out cross validation technique; i.e. for each data set, 
the meta information for all but the actual data set were used to train a 
decision tree, which was then evaluated on the remaining data set. If a 
suitable data set was predicted to be suitable, or an unsuitable data set 
was found to be unsuitable, the prediction was deemed correct.  

Results 
Table 5 shows the results from the prediction of whether or not a data 
set is suitable for rule extraction. 
 

Original representation Recoded representation  
Accuracy Naïve Accuracy Naïve  

Best selection 70.4 % (17) 63.0 % 74.1 % (13) 59.3 %  
All models 70.4 % (8) 77.8 % 92.6 % (9) 74.1 %  

 
Table 5. Summary of results from data set prediction 

 
The values in parenthesis were the minimum split value used for that 
specific result. The naïve guess (the majority guess) was unsuitable, i.e. 
most of the data sets were not suitable for rule extraction.  

Problem Analysis 
As can be seen, there are some differences between the two represen-
tations. The original representation resulted in fewer suitable data sets 
compared to the recoded representation. It is also harder to predict the 
suitability using the original representation. For the recoded represen-
tation the predictions are rather good, while the results for the original 
representation are much worse. The result on all models using the 
original representation is even worse than the naïve guess.  

It should be noted that for a data miner the best selection is probably 
the most interesting, since some choice of model, based on accuracy, is 
always used. 

Criteria Analysis 
To be able to analyze the importance of different characteristics, the 
decision trees used in the experiment were analyzed. The importance of a 
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criterion was evaluated from the number of times it was used to split the 
root node, the nodes in the second layer and in the third layer.  

 
 Root Second layer Third layer 

Best selection, original representation LgI (27) LgI (10) - 
Best selection, recoded representation LgI (1) 

LgRIC (26) 
LgI (1) 
NCE (14) 

- 

All models, original representation LgI (6) 
LgRIC (5) 
PSV (4) 
CE (12) 

LgI (3) 
LgRIC (11) 
PSV (7) 
CE (9)  
LgRIV (8) 

LgI (3) 
LgRIC (1) 
PSV (1) 
CE (6)  
LgRIV (5) 

All models, recoded representation LgRIC (27) LgRIV (18) - 

 
Table 6. Summary of important split variables in the trees 

 
The values in parenthesis are the number of trees where the characteristic 
was used to split a node. LgRIC, LgI and to some extent also CE/NCE 
are the most important variables in the trees. Much fewer of the 
characteristics were needed to predict the best selection. LgI, measuring 
the number of instances, was more important for the original 
representation. For the recoded representation, the LgRIC, measuring 
the ratio of instances to classes, was more important. Obviously, the 
hardest problem was to predict the original representation with all 
models. This is also visible in the variety of split characteristics used for 
this problem.  

The overall observation is that the most important criteria are the 
number of classes and the number of instances. Figure 4 shows the 
overall decision tree, based on all 27 data sets, for the recoded represen-
tation. The tree should be read so that if the condition is fulfilled, the left 
branch is selected. 
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Figure 4. Example of a decision tree for the recoded representation trained on all 
models. 

 
The interpretation of the decision tree is that data sets, where the ratio 
between instances and classes is high and the ratio between instances and 
variables is low, are classified as suitable for rule extraction. Loosely put, 
rule extraction is, according to this study, more likely to succeed for data 
sets with many instances and input variables but few classes.   

Conclusions 
The task to predict whether or not a data set is suitable for rule 
extraction was found to be more dependent on the representation than 
was expected before this study. The accuracy on the recoded 
representation is rather good, especially when all models are considered.   

The overall conclusion must be that it is possible to predict whether 
or not a data set is suitable for rule extraction, if the problem is 
represented in a favorable way. This, together with the fact that for many 
data sets the combination of a high accuracy technique followed by rule 
extraction outperforms techniques like decision trees on accuracy, makes 
the proposed setup interesting. 

It is also interesting to note that the best selection has many more 
suitable data sets for both representations. The natural interpretation is 
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that when the accuracy improves on the opaque model it is also easier to 
get good extracted models. 

The criteria that are important are LgRIC, LgI and CE/NCE. This 
means that the number of classes (and to some extent also the distri-
bution of instances among the classes) together with the number of 
instances are the most important criteria. 

Discussion 
First of all, there is a need for a second study where a specialized rule 
extraction algorithm is used instead of CART. We believe, based on pre-
vious work, that the outcome might be slightly different. More 
specifically, we think that in such study a higher percentage of all opaque 
models will be found “suitable for rule extraction”. Clearly, this only 
reinforces the potential of the proposed setup and the importance of 
being able to predict the outcome of applying rule extraction.  

It is also necessary to systematically evaluate different representation 
schemes that will make it easier to predict the suitability of rule extrac-
tion. 

Obviously the result of this study is just a small step in the direction 
of a more automated data mining process. Nevertheless, we think that 
this is a route that must be pursued. Data mining, as used by business, is 
currently too much art and too little science. Many vital decisions, such 
as choice of technique, have to be made early in the process, often based 
on conflicting facts and without sufficient support. We think that data 
mining tools must help the data miner with decisions like this and 
should ultimately include features like wizards or even automated 
choices.   

This study implies that for many data sets it is possible to 
automatically suggest a general purpose setup very likely to meet the 
demands regarding both accuracy and comprehensibility. In a parallel 
study we are trying to automate the choice of techniques used to create 
the opaque models. More specifically, we use genetic algorithms to select 
which models, of several, to combine in the committee machine 
producing the high accuracy (opaque) model. Our ambition with these 
two studies (combined with previous work on rule extraction) is to 
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suggest a fully automated choice of technique, applicable to many data 
mining situations.        
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Notes 
 
1. CRoss-Industry Standard Process for Data Mining was an ESPRIT project that 

started in the mid 1990’s. The purpose of the project was to propose a non-
proprietary industry standard process model for data mining. For details see 
<http://www.crisp-dm.org>. 

2. It should be noted that, strictly speaking, the terms transparency and comprehensi-
bility are not synonymous. A neural network could, for instance, be regarded as 
transparent, i.e. the topology, activation functions and the weight matrix can easily 
be turned into a functional description. However, following the standard 
terminology, the distinction is not vital in this paper. The main point is that 
transparency without comprehensibility is of limited value. 

3. Data can be coded in different ways when used by learning algorithms. The chosen 
representation might be important for the success of rule extraction. For more 
details see the section on Data representation. 

4. It must be noted that this means a representation for a specific data set. As an 
example, the original representation for the Iris data set would be either suitable or 
not. 
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