
MARK DOUGHERTY

Dougherty, Mark. “What Has Literature to Offer Computer Science?” human it 7.1(2004): 74–91

What Has Literature to Offer Computer Science?
Mark Dougherty

In this paper I ask the question: what has literature to offer computer science?
Can a bilateral programme of research be started with the aim of discovering
the same kind of deep intertwining of ideas between computer science and
literature, as already exists between computer science and linguistics? What
practical use could such results yield?

I begin by studying a classic forum for some of the most unintelligible
pieces of prose ever written, the computer manual. Why are these books so
hard to understand? Could a richer diet of metaphor and onomatopoeia help
me get my laser printer working?

I then dig down a little deeper and explore computer programs themselves
as literature. Do they exhibit aesthetics, emotion and all the other multi-
farious aspects of true literature? If so, does this support their purpose and
understandability?

Finally I explore the link between computer code and the human writer.
Rather than write large amounts of code directly, we encourage students to
write algorithms as pseudo-code as a first step. Pseudo-code tells a story within
a semi-formalised framework of conventions. Is this the intertwining we
should be looking for?

In this paper, I will try to explore whether there is a meaningful
relationship between computer science and literature studies. Since
computer science is very broad, some focus is needed and I have, perhaps
not surprisingly, identified artificial intelligence (AI) as a particularly
relevant branch of the subject. AI touches on application areas close to
literature studies, such as natural language processing and contextual
representation. It also involves deep philosophical debates and histori-

MARK DOUGHERTY

75

cally has been an “open” multi-disciplinary activity. A key aim of
initiating such a discussion is the difficulties that many computer science
students experience when learning to write programs and their related
documentation. A key hypothesis is that an educational programme
founded purely on mathematics and logic does not provide the necessary
tools to communicate to other people the complex ideas and abstractions
often represented in computer programmes.

Before embarking upon any detailed discussion of the issues involved,
it is interesting to briefly review a long-standing philosophical discussion
concerning what engineering and mathematics have in common with the
arts. In the preface to his novel The Picture of Dorian Gray (1890), Oscar
Wilde wrote:

All art is at once surface and symbol. Those who go beneath the surface do
so at their peril. Those who read the symbol do so at their peril. It is the
spectator, and not life, that art really mirrors. Diversity of opinion about
a work of art shows that the work is new, complex, and vital. When
critics disagree the artist is in accord with himself.

We can forgive a man for making a useful thing as long as he does not
admire it. The only excuse for making a useless thing is that one admires
it intensely.

All art is quite useless.

Wilde is quite uncompromising. There is no relationship between
engineering and art; the two activities are totally disjoint. The gulf
between stoic and epicurean can never be crossed. Wilde laces this
argument with a humorous irony, but the reader is left with a clear
impression that although art may be “useless” it is immeasurably more
important than practical matters.

Jules Verne in Paris in the Twentieth Century (circa 1863; provenance
disputed) describes a world in which this supposed gulf between
engineering and art is extremely wide. However, Verne argued that
science and engineering would dominate by 1960, with art and literature
largely abandoned. Verne, of course, would never have subscribed to this
philosophical viewpoint, but was nevertheless a little afraid of the power
of technology. It is ironic that at around the very time of Verne's future

HUMAN IT OPEN SECTION

76

scenario, Jacques Ellul published his diatribe against technocracy, The
Technological Society (1948), the same year in which George Orwell
wrote Nineteen Eighty Four.

Yet at the other end of the spectrum we find the First Proclamation of
the Weimar Bauhaus (circa 1920). See Bauhaus, 1919-1928 1952 for an
introduction:

Art is not a profession. There is no essential difference between the artist
and the craftsman. The artist is an exalted craftsman. In rare moments of
inspiration, moments beyond the control of his will, the grace of heaven
may cause his work to blossom into art.

I lean toward this second view, although I think the first sentence a little
extreme. Fine arts, poetry, music and numerous other items I could
mention all enrich our lives and are provided to us by professional artists.
Yet I think the basic philosophy is sound; there is something of an artist
in all of us, regardless of our chosen profession. Likewise there is
something of an engineer in every artist; Samuel Florman (1994) relates
in The Existential Pleasures of Engineering an illuminating conversation:

Other artists have found in the machine a pure beauty that seems
completely isolated from subjective experience. Fernand Léger tells of
visiting an airplane exhibition with fellow artists Duchamp and Bran-
scui. Duchamp, according to the story, turned to Branscui and said
“Painting has come to an end. Who can do anything better than this
propellor?” “I myself,” relates Léger, “felt a preference for the motors….
But I still remember the bearing of those great propellers. Good God, what
a miracle!”

Perhaps nineteenth and early twentieth century technology was more
accessible. A modern microprocessor is an engineering marvel, but is
pretty unexciting from an external viewpoint. Creating a link between
computer science and literature studies is going to require rather more
thought; the same kind of flash of insight as described above is perhaps
not very likely.

Language and Computer Science
The formalisation of language has been fundamental to computer
science. A computer must be able to interpret the meaning of a program;

MARK DOUGHERTY

77

a description of an algorithm written by a human. In general this task is
carried out by a compiler, a special-purpose piece of software which
translates the human-readable program into a machine-readable series of
binary operations.

In order to ensure reliable and meaningful results, compilers have to
be made highly restrictive. They only accept programs which adhere to a
certain pre-determined set of syntactical rules. The semantic meaning of
these programs (i.e. what algorithm does a particular program represent?)
has to be as unambiguous as possible.

One finds that to accurately define allowable syntax is relatively easy.
The study of formal grammars (Chomsky 1956) has yielded a set of
logical and mathematical tools, which can be used to rigorously define
the syntax of programming languages. Furthermore the same tools can be
used as a basis for building the necessary parsing machinery within com-
pilers.

Work in this area has also yielded specialist text-processing languages
such as SNOBOL and ICON. These have been widely used in the
humanities (Johnson 1999) for tasks such as word counting, producing
statistics on sentence length and extracting all dialogue for a particular
character for further analysis.

Unfortunately, defining semantics accurately is very hard and research
efforts in this direction currently occupy many computer scientists. Even
when a denotational approach is taken, where we are concerned only
with the meaning of programs and put to one side how this meaning is to
be implemented, pinning down the meaning of even simple programs is
fraught with difficulty. Subtle traps abound and the problem belies its
apparent simplicity, given the highly restricted nature of compilers and
computer languages. Nielsen and Nielsen (1992) give a good intro-
duction to the field.

Natural Language Processing and Artificial Intelligence
More recently, serious efforts have made in the world of artificial
intelligence to build programs which can process natural language. By
natural language we mean “normal” human speech and writing, as
opposed to formalised, restrictive computer languages. Apart from
obvious practical applications (wouldn’t it be nice if we could communi-

HUMAN IT OPEN SECTION

78

cate with our computers instead of having to learn to type?), solving this
problem is widely recognised as the holy grail of artificial intelligence.

The motivation is that speech and language is a key aspect of human
intelligence. This was first expounded by Descartes in his great tour de
force A discourse on method of rightly conducting the reason and seeking
truth in the sciences.

if there were machines bearing the image of our bodies, and capable of
imitating our actions as far as it is morally possible, there would still
remain two most certain tests whereby to know that they were not
therefore really men. Of these the first is that they could never use words or
other signs arranged in such a manner as is competent to us in order to
declare our thoughts to others: for we may easily conceive a machine to be
so constructed that it emits vocables, and even that it emits some
correspondent to the action upon it of external objects which cause a
change in its organs; for example, if touched in a particular place it may
demand what we wish to say to it; if in another it may cry out that it is
hurt, and such like; but not that it should arrange them variously so as
appositely to reply to what is said in its presence, as men of the lowest
grade of intellect can do.

In a seminal work, Turing (1950) put this philosophical standpoint
into the context of the newly emerging science of computing. In doing so
he laid down the foundations of artificial intelligence. Turing’s idea was
to devise a test of machine intelligence, now known as the Turing test. In
this test a human interrogator is placed in a closed room and is able to
communicate via computer terminals to two other rooms. In the first
room is another human and in the second room is a computer running
an “artificial intelligence” program designed to converse in natural lan-
guage. The computer passes the Turing test if the interrogator is unable
to determine which terminal communicates with a human and which
communicates with a computer.

Fifty years later, no attempt to pass the Turing test has succeeded. Just
a few minutes interrogation is sufficient to make a successful distinction,
even if the domain of the conversation is limited to a specific topic.
Turing’s final sentence of the paper has proved more prophetic than he
himself realised: “We can see only a short distance ahead, but we can see

MARK DOUGHERTY

79

plenty that remains to be done.” Why is understanding natural language
so difficult? The answer supplied by Wittgenstein (1953) is that human
speech is neither objective nor amenable to formalisation. This philoso-
phical foundation has inspired some authorities such as Dreyfus and
Dreyfus (1985) to deny the possible existence of AI. This may be
throwing the baby out with the bath water, but as yet we are not in a
position to make a judgement. What is at stake is whether the human
mind is restricted by the same fundamental limitations that theories such
as Gödel’s incompleteness theorem and the Church-Turing Thesis place
upon the mechanical and electronic computers. See Lucas (1961) for a
fascinating article on this issue.

Computers and Literature
If computers are still so woefully poor at understanding simple natural
language, is computer understanding of literature really a relevant or
sensible domain? Or can computer science only provide tools to aid the
creation and understanding of literature by humans? Whilst computer
tools have yielded several interesting literary concepts (e.g. interactive
poetry), this does not amount to the same deep relationship as exists
between computing and linguistics, as summarised above. If the role of
computing is to be more than a provider of services to the study of
literature, I believe we have to dig a little deeper in order to find parallels
and a more fundamental relationship which is more reciprocal in nature.

First it must be necessary to define what distinguishes the study of
literature from the study of language. A (non-exhaustive) list of criteria
might be:

• Higher-order semantic meanings
• Fictional content
• Metaphor and other such abstractions
• Aesthetics
• Emotion
• Style (on the border with linguistics)

HUMAN IT OPEN SECTION

80

In essence, analysis of literature involves a further layer of what we term
meta-analysis in the world of computing, over and above linguistic
analysis. Meta-analysis involves concepts which themselves are made up
of lower-level concepts. As such it is a strictly relative term.

One might ask: is not all meaning wrapped up in the general term
“semantics”? One could, but I think this would confuse the issue. To
know what pain is can never be equated with experiencing pain. To quote
Frank Zappa: “The computer can’t tell you the emotional story. It can
give you the exact mathematical design, but what's missing is the
eyebrows.”

In computer science, semantics are dealt with formally using
mathematics, but no such mathematical tools exist for dealing with
higher semantic concepts. In fact even the syntax of higher-level concepts
has yet to be pinned down; only relatively restricted higher-order logics
have been formalised. The contextual knowledge which an average
human being has access to and applies on a daily basis, is therefore still
very poorly understood. This frame problem and the need for higher
levels of reasoning is discussed by Dennett (1984):

when we think before we leap, how do we do it? The answer seems
obvious: an intelligent being learns from experience, and then uses what it
has learned to guide expectation in the future. Hume explained this in
terms of habits of expectation, in effect. But how do the habits work?
Hume had a hand-waving answer – associationism – to the effect that
certain transition paths between ideas grew more-likely-to-be-followed as
they became well worn, but since it was not Hume’s job, surely, to explain
in more detail the mechanics of these links, problems about how such
paths could be put to good use – and not just turned into an impenetrable
maze of untraversable alternatives – were not discovered. Hume, like
virtually all other philosophers and ‘mentalistic’ psychologists, was unable
to see the frame problem because he operated at what I call a purely
semantic level, or a phenomenological level [....]

That is the mechanical question the philosophers left to some dimly
imagined future researcher. Such a division of labour might have been all
right, but it is turning out that most of the truly difficult puzzles of
learning and intelligence get kicked downstairs by this move.

MARK DOUGHERTY

81

Thus one answer to the question at the beginning of this section
might be that computer understanding of literature is simply irrelevant at
the current time; we have no sufficiently powerful tools or theoretical
basis upon which to base such a study. However, this is perhaps a little
too pessimistic. Although tackling heavy literature head on is beyond us,
we can speculate as to whether the world of literary analysis has some
insights, which might help the world of artificial intelligence solve some
aspects of the above-mentioned frame problem. Just as computer science
has “borrowed” much from linguistics in order to solve problems which
were pressing and difficult at the time, could borrowing from literature
studies yield similar dividends?

Such an approach would use human literature as a layer of abstraction
above the mind itself; a sort of mezzanine floor in Dennett’s metaphori-
cal staircase, where we make an attempt to catch at least some of the
difficult problems on their way to oblivion.

Another possibility is to examine the world of computer science for
signs of literary development. Perhaps the seeds are present even if there
are no flowers to speak of. I will therefore turn my attention to various
aspects of the process of designing, building and documenting computer
systems. I will argue that some seeds of literature are indeed present,
which perhaps give some hope for interesting developments in the
future.

Documenting a Computer System
Some of the problems that the world of computing is still struggling to
solve are best illustrated by one or two anecdotes. My father lectures in
the Department of Applied Mathematics and Theoretical Physics at
Cambridge University. Clearly he is no fool, although perhaps I rather
unjustly thought so during my teenage years. Like most older academics
he has witnessed a complete revolution in daily working practices. The
typing pool is gone, the mainframe has come and gone, most communi-
cation is now through e-mail and his main office support is the PC
sitting on his desk.

As with most computers, sometimes things go wrong and he has to
seek out the help of a computer officer to put things right. He goes to his
or her office, explains the problem and the computer officer explains how

HUMAN IT OPEN SECTION

82

to put it right. All well and good, up to the point when my father arrives
back in his office and can no longer remember the details of the answer to his
question. Somehow the information is not presented to him in a form
which is easy to assimilate. No wonder, if the conversation follows a path
as described by Jackson (1999):

If you have a memory like mine, you probably forget your passwords on
various machines quite frequently. How does your system administrator,
let’s call him Sam, reset your password? Our budding knowledge engineer,
Ken, tries to find out.

Sam: Well, if it’s a YP password, I first log on as roon on the YP master.

Ken: Er, what’s the YP master?

Sam: It’s the diskfull machine that contains a database of network
information.

Ken: ‘Diskfull’ meaning - ?

Sam: - it has the OS installed on local disk.

Ken: Ah. (Scribbles furiously.) So you log on…

Sam: As root. Then I edit the password datafile, remove the encrypted
entry, and make the new password map.

Ken: …password map. (Attempting humour.) What happens if you forget
you password?

Sam: On a diskfull system, I could reboot to single user mode, or I could
load MINIROOT so I can edit /etc/password. Or I could reload the entire
system, which I’d rather not do. Root passwords aren’t usually included in
YP. On a diskless client I could use the passwd command.

Ken: Oh.

Or consider the experience of Alan Kay (1996) as he relates his first
day in graduate school:

MARK DOUGHERTY

83

Through a series of flukes I wound up in a graduate school at the
University of Utah in the fall of 1966, “knowing nothing.” […] Head
whirling, I found my desk. On it was a pile of tapes and listings, and a
note: “This is the ALGOL for the 1108. It doesn’t work. Please make it
work.” The latest graduate student gets the latest dirty task.

The documentation was incomprehensible. Supposedly this was the Case-
Western Reserve 1107 ALGOL – but it had been doctored to make a
language called SIMULA; the documentation read like Norwegian
transliterated into English, which in fact it was. There were uses of words
like activity and process that did not seem to coincide with normal
English usage.

Finally another graduate student and I unrolled the program listing 80
feet down the hall and crawled over it yelling discoveries to each other.

If university professors and graduate students can’t make head or tail
of computer systems, what chance has everybody else? Why are computer
manuals and other technical documentation often so hard to understand?
Of course all manner of specialists find it difficult to discuss their
particular domain of expertise. Try discussing techno/house music with a
teenager or rocks of the tertiary period with a geologist. Nevertheless,
computer science does seem to suffer from the problem more than most.
In addition, most of us can live our lives quite comfortably without
knowing anything about techno/house music, but it is increasingly
difficult to fall back on that attitude where computers are concerned.

I believe one reason is that many computer scientists become so
heavily focussed on the linguistic, formalised aspects of computing that
they lose sight of other, equally important aspects of using our own
human language. The simple art of telling a story, the use of poetry as a
tool to aid our faculties of memory have been forgotten. Many computer
scientists talk and write as though they were communicating information to
a computer, not to a human being. Jerome McGann (2001) discusses
some of the differences between “thin” text (for the purpose of
communicating information) and “thick” text (more poetic in nature).
This is maybe a sensible distinction, but it seems difficult for many
people to write in both genres and in many circumstances an overlap

HUMAN IT OPEN SECTION

84

could aid both understanding and memorability. In this sense, many
computer scientists have a lot to learn from the study of literature.

We should also remember that in many non-western cultures, tradi-
tional story-telling remains a key tool for disseminating knowledge from
one generation to the next. It would be unfortunate if the Western-
dominated “information age” destroyed some of this heritage.

Writing Code
Is writing a computer program like writing a novel? Strangely enough, in
some ways it is. Now the reader is to be either a computer or another
computer scientist and for many, this seems to be a more comfortable
situation. Thus we find a great emphasis on clarity and aesthetics. It is
not enough to write program code that works well, it has to appeal to
some higher sensitivities. Deitel and Deitel (1998) write:

Welcome to ANSI/ISO Draft Standard C++! This book is by an old guy
and a young guy [.…] The old guy wants clarity; the young guy wants
performance. The old guy appreciates elegance and beauty; the young guy
wants results.

Knuth (1997) is even stronger in his affirmation that programming is a
creative, artistic experience. Note that he also specifically relates
programming to poetry:

The process of preparing programs for a digital computer is especially
attractive, not only because is can be economically and scientifically
rewarding, but also because it can be an aesthetic experience much like
composing poetry or music.

Humour also abounds in the world of programming. There is an
annual “obfuscated C code” competition in which programmers compete
to write the most ridiculous programs they can think of. For example:

MARK DOUGHERTY

85

#define _ -F<00||--F-OO--;
int F=00,OO=00;
main(){F_OO();printf("%1.3f\n",4.*-F/OO/OO);}F_OO()
{
 --_-_
 --_-_-_-_-_-_-_
 --_-_-_-_-_-_-_-_-_-_
 --_-_-_-_-_-_-_-_-_-_-_-_
 --_-_-_-_-_-_-_-_-_-_-_-_-_
 --_-_-_-_-_-_-_-_-_-_-_-_-_
--_-_-_-_-_-_-_-_-_-_-_-_-_-_
--_-_-_-_-_-_-_-_-_-_-_-_-_-_
--_-_-_-_-_-_-_-_-_-_-_-_-_-_
--_-_-_-_-_-_-_-_-_-_-_-_-_-_
 --_-_-_-_-_-_-_-_-_-_-_-_-_
 --_-_-_-_-_-_-_-_-_-_-_-_-_
 --_-_-_-_-_-_-_-_-_-_-_-_
 --_-_-_-_-_-_-_-_-_-_
 --_-_-_-_-_-_
 --_-_
}

The code above was a winning entry by Brian Wesley in 1988. This
program (in an extremely devious way which defies explanation to a non-
technical readership) computes the value of pi by counting the number
of dashes in the circle, which gives an estimate of the area. (If we assume
the radius to be of value 1, the area will be equal to pi.) As the author
says, “for more accuracy, write a bigger program!”.

Some artistic and literary seeds therefore seem to be present in the
world of computer science. A question which we should ask ourselves is
whether we can build on this beginning and produce anything useful
(thus proving Wilde wrong!).

Describing Algorithms
Perhaps it is whilst describing problems, and algorithms to solve them,
that computer scientists come both closest to, and furthest from real
literature. In some books concerning algorithms we find a richness of
metaphor and a creativity of expression which outshines factual publica-

HUMAN IT OPEN SECTION

86

tions in many other fields. In others, the prose is, to be frank, both
tortuous and poverty-stricken.

Consider the standard graph theory problem of finding the convex
hull of a set of points in a two-dimensional plane. The convex hull of a
set of points is the smallest polygon which surrounds all of the points, as
illustrated in figure one:

Figure 1. A convex hull

In presenting this problem, Harel (1996) chooses to dress the problem
up in a zoological guise. A programmer is to spend the night in an
imaginary jungle. The points are a family of fierce, programmer-eating
tigers, for the moment asleep. Before the programmer can go to bed, it is
necessary to construct a fence around the sleeping tigers. Naturally, the
programmer wishes to build the shortest possible fence.

This simple description transforms our problem. It becomes far easier
to visualise what must be done and it simplifies the task of remembering
the details of both the problem and the solution.

Yet such an approach is all too rare. More typical in a computer
science textbook is prose of the following character:

Most of our attention in this section has been devoted to transformations
involving postfix operations. An algorithm to convert an infix expression
into postfix scans characters from left to right, stacking and unstacking as
necessary. If it were necessary to convert from infix to prefix, the infix

MARK DOUGHERTY

87

string could be scanned from right to left and the appropriate symbols
entered in the prefix string from right to left. Since most algebraic
expressions are read from left to right, postfix is a more natural choice.

Reading one paragraph of this material is tiring on the brain. The book
the above extract comes from, Data Structures using C and C++ by
Langsam et al. (1996), is 672 pages long and in a uniform style! No
wonder many computer science lecturers complain that their students are
reluctant to open their books.

Finding a middle ground
Despite the occasional glimpses of a closer relationship, there is a large
and yawning gap between contemporary computer science and literary
studies. How might we try to bring the two subjects together? How can
we define a middle ground in which to meet?

My view is that a good meeting ground is what computer scientists
term “pseudo-code”. Rather than write large amounts of computer code
directly, we encourage students to write algorithms as pseudo-code as a
first step. This frees us from the harsh, rigorous formality of actually
writing real code and provides a “thicker” style of writing than the code
itself (although it is still pretty “thin” from a global perspective).

A simple example of pseudo-code might be:

While there are more items on my shopping list
Read next item and cross it off
Place the said item in my shopping trolley
Add the price of the item to my total bill to be paid

Since pseudo-code tells a story within a semi-formalised framework of
conventions, it seems well suited for analysis in itself, using tools and
techniques usually reserved for the study of poetry and literature. This is
particularly pertinent in the light of the following statement by Levitin
(2003): “Surprisingly, computer scientists have never agreed on a single
form of pseudocode, leaving textbook authors to design their own
‘dialects’.”

Study of these different dialects and conventions could prove
illuminating. Which explanatory devices are the most useful? Would
making pseudocode “thicker” make it less or more readable?

HUMAN IT OPEN SECTION

88

We can also try rewriting the above example (which is somewhat dry
and functional) in one or two different styles. Here is a rather quaint
poetic version:

A pen gently descends death row
Kissing the entries a fond farewell
The tumbril welcomes its latest victim
How much more blood money to escape from this hell?

How about a rap-artists’ version?

Ain’t you got what you came for?
Check-out on the list you whore.
All the stuff goes in the cart
Count the cash you lazy tart

If nothing else, this kind of exercise is rather fun.

Conclusions
Many aspects of artificial intelligence have resisted all attempts to create a
robust mathematical framework. Perhaps we have had the wrong
approach? It is not altogether surprising to find that mathematics and
logic are not the best tools to represent aspects of the human psyche.

Perhaps these tools are to be found in the area of literature studies. A
deep relationship between literature studies and computer science is
certainly a possibility. It will not be easy to formalise and this paper is
only a very speculative discussion about possible lines of enquiry. A
more detailed study of the historical development of the genre of
computer documentation would also be a fascinating line of enquiry and
is perhaps a more realistic initial line of research.

The possible benefits of carrying out such a study could be con-
siderable, impacting on a number of important areas of computer
science; artificial intelligence, code writing, language design and many
others. A practical outcome of this paper I would hope for is a move to
modify the educational syllabus typically followed by computer scientists
to include more study of the humanities. I am convinced that wider
reading and a demand to write “thicker” text on occasions would help to
overcome some of the problems of communication which I have
discussed.

MARK DOUGHERTY

89

However, I would strongly argue that we should consider exploring
these ideas regardless of their possible practical applications. For as Wilde
said: “Nowadays people know the price of everything, and the value of
nothing.”

Mark Dougherty has an MA in computer science from Cambridge Univer-
sity, a PhD in civil engineering from University of Leeds, is docent in traffic
and transport planning at KTH and professor in computer science at Hög-
skolan Dalarna. He has taught at university level in all of these subjects, plus
mathematics, philosophy and electrical engineering. Interdisciplinary studies
are a natural focus for his research work.
Email: mdo@du.se
Web page: http://www.du.se/~mdo

HUMAN IT OPEN SECTION

90

References

Bauhaus, 1919-1928. Eds. Herbert Bayer, Walter Gropius & Ise Gropius. Boston:
Charles T. Bradford, 1952.

chomsky, noam (1956). “Three Models for the Description of Languages.” IRE
Transactions on Information Theory 2: 113–124.

deitel, harvey m. & paul j. deitel (1998). C++: How to Program. 2nd ed.
Upper Saddle River, NJ: Prentice Hall.

dennett, daniel (1984): “Cognitive Wheels: The Frame Problem of AI.” Minds,
Machines and Evolution: Philosophical Studies. Ed. Christopher Hookway. Cambridge:
Cambridge UP. 129-151.

descartes, rené (1993). A Discourse on the Method of Rightly Conducting the Reason
and Seeking Truth in the Sciences. [1637]. Project Gutenberg.
<http://www.gutenberg.net/etext93/dcart10.txt>

dreyfus, hubert & stuart dreyfus (1985) . Mind over Machine. New York:
Macmillan/The Free Press.

florman, samuel (1994) . The Existential Pleasures of Engineering. 2nd ed. New
York: St Martin’s Press.

harel, david (1996). Algorithmics: The Spirit of Computing. 2nd ed. Reading, MA:
Addison Wesley.

jackson, peter (1999) . Introduction to Expert Systems. Harlow: Addison Wesley.

johnson, eric (1999). Computer Programming for the Humanities in SNOBOL4.
Madison: Dakota State UP.

MARK DOUGHERTY

91

kay, alan (1996) . “The Early History of Smalltalk.” History of Programming
Languages. Eds. Thomas J. Bergin, Jr. & Richard G. Gibson, Jr. Reading, MA: Addison
Wesley. 511-579.

knuth, donald (1997) . The Art of Computer Programming: Volume 1: Fundamental
Algorithms. 3rd ed. Reading, MA: Addison Wesley.

langsam, yedidyah, moshe j. augenstein & aaron m. tenenbaum
(1996) . Data Structures Using C and C++. 2nd ed. Upper Saddle River, NJ: Prentice
Hall.

levitin, anany (2003) . The Design and Analysis of Algorithms. Boston: Addison
Wesley.

lucas, john (1961). “Mind, Machines and Gödel.” Philosophy 36: 112-127.

mcgann jerome j. (2001). Radiant Textuality. New York: Palgrave.

nielson, hanne riis & flemming nielson (1992). Semantics with Appli-
cations: A Formal Introduction. Chichester: Wiley.

turing, alan (1950). “Computing Machinery and Intelligence.” Mind 59: 433-
460.

verne, jules (1996). Paris au XXe siècle. [1994, posth.]. New York: Ballantine.

wilde, oscar (1992) . The Picture of Dorian Gray. [1890]. Ware: Wordsworth
Editions.

wittgenstein, ludwig (1953) . Philosophical Investigations. New York: McGraw-
Hill.

