
HUMAN IT

156

PER AHLGREN

157

Query Expansion
Per Ahlgren

The purpose of query expansion, the process of adding new terms to a query,
is to improve the retrieval effectiveness. Query expansion can be divided into
three types: manual, interactive and automatic. This article presents, and to
some extent discusses, these three types of query expansion. The article also
gives examples of ranking algorithms for query expansion.

Information retrieval (IR) deals with various methods of storing, struc-
turing and retrieving documents. An IR system is a computer-based
system for storage and retrieval of documents. Normally, the retrieval
mechanism of an IR system is based on matching terms, i.e. terms
that occur both in the document and in the query.1 Then, users of an
IR system have to express their information needs in the vocabularies
of desired documents. This implies a difficulty for the user, especially
when concerning large full text databases, as these contain different
expressions for the same concept (Voorhees , p. ). Relevant do-
cuments, in which search concepts are expressed by other terms than
the ones used by the user, could remain unretrieved. In this case, the
recall of the retrieval (the fraction of the relevant documents which has
been retrieved) will suffer.
 The aim of this article is to present a number of (already existing)
methods for query expansion (QE). QE could be defined as the process
of adding new terms to a query. QE results in a new query and aims at
improving retrieval effectiveness.

HUMAN IT

158

PER AHLGREN

159

QE

QE could be divided into three different types. If the user chooses ex-
pansion terms, it is called manual QE; if the system suggests expansion
terms to the user, it is called interactive QE. If the whole process is in-
visible for the user, automatic QE is at hand.
 One important issue to consider when applying QE is from which
source the expansion terms should be collected. Efthimiadis (, p. )
discusses two different types of sources: sources based on search results
and sources constituting knowledge structures (independent of the
search process). The documents which have been retrieved in an earlier
iteration of the search and which have been judged to be relevant consti-
tute an example of a source based on search results. Sources in the form
of knowledge structures could be either dependent or non-dependent
on the document collection. One example of a collection-dependent
knowledge structure is an automatically constructed thesaurus. One
example of a collection-independent knowledge structure is an area-
specific (manually constructed) thesaurus. The three types of QE and
possible term sources are shown graphically in Figure .

 Query Expansion

 Manual QE Automatic QE Interactive QE

 Based on Based on

 search results knowledge structures

 Collection-dependent Collection-independent

 Figure . QE: types and term sources. Based on Efthimiadis  (p. ).







HUMAN IT

158

PER AHLGREN

159

Relevance feedback is an iterative process in which the user judges the
relevance of retrieved documents, after which the system uses this in-
formation in order to modify the query (Korfhage , pp. –).
A typical relevance-feedback operation could be described as follows
(Efthimiadis , p. ). The user constructs a query that is match-
ed against the document collection. He then judges the relevance of
retrieved documents, usually on the basis of titles or abstracts, and
chooses a number of relevant ones. The system uses the chosen rele-
vant documents in order to modify the initial query by re-weighting
the initial query terms and/or by adding terms that appear useful and
deleting terms that do not. This process creates a new query, which is
more similar to the documents that were judged relevant than the initi-
al query was.
 There are a number of ranking algorithms for QE. These attempt to
quantify the usefulness of a query term at retrieval (ibid., p. ). Terms
that are highly ranked by a certain algorithm could then be used in or-
der to expand the query. Two of these ranking algorithms are described,
and partially compared, below.

The WPQ-algorithm. The weight (the usefulness) of a term t is defined
according to

 ()

where N is the number of documents in the collection, R the number
of documents judged to be relevant by the user, n the number of do-
cuments indexed by t and r the number of documents judged by the
user to be relevant and that have been indexed by t. The second factor
in () puts relatively strong weight on the condition that terms occur
in relevant documents. This is because the second component of the
factor normally becomes so small that its information content is lost
(Efthimiadis , p. ). The first factor – compared to the second
one – shows greater consideration to the condition that terms occur
infrequently in the documents that have not been judged to be relevant

WPQ t
r N n R r

n r R r

r

R

n r

N R
()

(.)(.)

(.)(.)
= + − − + +

− + − +
⋅ − −

−
log

0 5 0 5

0 5 0 5





,

HUMAN IT

160

PER AHLGREN

161

(the number of documents that have not been judged to be relevant
and are indexed by a term t is equal to n – r).
 Another example of a ranking algorithm is Porter’s algorithm, defined
according to

 ()

In conformity with the second factor in (), () puts a relatively strong
weight on the condition that terms occur in relevant documents: the
second component in () normally becomes so small that its informa-
tion content is lost.
 Example: Let t

1
,t

2
 and t

3
 be terms and let q be a query. Let the col-

lection consist of  documents, i.e. N =1000 Assume that  docu-
ments are judged to be relevant with respect to q, i.e. R =10. Assume
that the number of documents indexed by t

1
 is  and that the number

of documents that are judged to be relevant and that are indexed by
t

1
 is . Then

 ()

and

 ()

Assume that the number of documents indexed by t
2
 is  and that the

number of documents that are judged to be relevant and that are in-
dexed by t

2
 is . Then

 ()

and

 ()

Finally, assume that the number of documents indexed by t
3
 is  and

that the number of documents that are judged to be relevant and that
are indexed by t

3
 is . Thus, t

3
 indexes all documents that have been

judged relevant, but no other document. Then

Porter t
r

R

n

N
() = −

Porter t() .1

8

10

50

1000
0 75= − =

Porter t() .2

6

10

10

1000
0 59= − =

WPQ t()
(.)(.)

(.)(.)1

8 0 5 1000 50 10 8 0 5

50 8 0 5 10 8 0 5

8= + − − + +
− + − +

⋅log
110

50 8

1000 10
1 42− −

−






= .

WPQ t()
(.)(.)

(.)(.)2

6 0 5 1000 10 10 6 0 5

10 6 0 5 10 6 0 5

6= + − − + +
− + − +

⋅log
110

10 6

1000 10
1 49− −

−






= .

HUMAN IT

160

PER AHLGREN

161

 ()

and

 ()

Both WPQ and Porter rank t
3
 the highest, but the two algorithms differ

with regard to the ranking of t
1
 and t

2
. WPQ ranks t

2
 higher than t

1
, while

Porter ranks t
1
 higher than t

2
. Porter – as opposed to WPQ – puts almost

all weight on the condition that terms occur in relevant documents.
t

1
 occurs in eight of the ten documents that are judged to be relevant,

t
2
 in six of them. This is reflected in Porter’s ranking of the two terms.

With respect to terms’ absence from documents that have not been
judged to be relevant, t

2
 performs better than t

1
, which WPQ takes into

consideration.
 Note: a term that is highly ranked by WPQ (or Porter) could be com-
pletely unsuitable as an expansion term. Assume that a term t does not
occur in a query q, which is to be expanded. Assume, also, that t occurs
in all documents that the user has judged to be relevant, but not in any
other document in the collection (the term t

3
 in the example above is

such a term). Finally, assume that the retrieval strategy used is based
on matching terms. Under these assumptions, both WPQ and Porter
will rank t highly. To expand q with t would, however, be pointless, as
relevant documents that have not already been retrieved do not match
the expanded query with regard to t.
 Efthimiadis (, p. ) gives examples of research questions with
reference to QE. Some of the issues raised are:

• Which are the best terms for QE?
• Where can we get the expansion terms?
• How useful could the terms be?
• How could we rank the terms?
• Are users capable of discovering good terms?

WPQ t()
(.)(.)

(.)(.3

10 0 5 1000 10 10 10 0 5

10 10 0 5 10 10 0
= + − − + +

− + − +
log

55

10

10

10 10

1000 10
4 62

)
.⋅ − −

−






=

Porter t() .3

10

10

10

1000
0 99= − =

HUMAN IT

162

PER AHLGREN

163

• How do users choose terms?
• What is the relation between the initial query terms and the terms

that the users choose?
• Is there a difference between the terms chosen by the user and the

ones presented by the system?

Manual QE

When searching in Boolean IR systems so-called search strategies, i.e.
ways to tackle search problems, could be used (Harter ). One pos-
sibility for the user is to apply “the building blocks strategy”, a search
strategy that could be described thus:

1. Identify the n concepts that should be present in a retrieved docu-
ment.

2. For each concept (n concepts) identified in step , construct a list
of synonymous (or nearly synonymous) terms, which express the
concept.

3. For each list (n lists) constructed in step , combine the terms of the
list with the operator OR.

4. Combine the n OR formulations constructed in step  with the
operator AND.

In step , an initial term is generated for a given concept (the term that
is used to identify the concept). In step , the initial term (which could
be regarded as a query) is expanded with the synonymous (or nearly
synonymous) terms that were generated in step  (and with the OR
operator). This process is an instance of manual QE. The terms that are
added to the initial terms in step  could be collected from a manually
constructed (and collection-independent) thesaurus, for instance. In
this case, manual QE based on a collection-independent knowledge
structure is at hand.
 Another possibility for the user is to apply the search strategy “cita-
tion pearl growing”. Step  in this strategy combines n terms with the
operator AND, and the resulting AND formulation is matched against

HUMAN IT

162

PER AHLGREN

163

the document collection. Step  uses descriptors and free text terms
from retrieved relevant documents (“the pearl”), together with the OR
operator, in order to expand the initial terms (the conjuncts in the AND
formulation in step ). The resulting formulation is an AND formula-
tion, the conjuncts of which are OR-formulations. The formulation
is then matched against the document collection, and hopefully new
relevant documents will be retrieved. (The process of examining re-
trieved relevant documents in order to produce new terms, which the
conjuncts of the current AND formulation could be expanded with,
could be iterated an arbitrary number of times.)
 In step , the user expands an AND formulation with new terms, and
thereby manual QE (based on search results) is at hand. Efthimiadis
(, p. ) points out that “citation pearl growing” could be regarded
as the manual equivalent to relevance feedback.

Automatic QE

The four following sections will describe, in turn, () QE with regard
to the vector model, () a method used to create association clusters
around the query terms, () a method that ranks each term in the do-
cument collection that does not occur in the initial query with consi-
deration to usefulness as expansion term, and () a method that uses a
general lexical system.

QE and term re-weighting for the vector model

Relevance feedback was applied early on to the vector model. In this
IR model2 both a document d

j
 and a query q are represented by t-di-

mensional vectors:

 ()

 ()

where t is the number of terms in the vocabulary, i.e. the set of index
terms in the system, w

i,j
 the weight of the term k

i
 in the document d

j

d d w w wj j j j t j= =
r

(,), , ,1 2 , ... , 

q q w w wq q t q= =r
(,), , ,1 2 , ... , 

HUMAN IT

164

PER AHLGREN

165

and w
i,q

 the weight of k
i
 in the query q.3 The vector model measures

the degree of similarity between query and document by measuring the
similarity between the vectors in question. The cosine measure is often
used for this purpose (see, for example, Baeza-Yates & Ribeiro-Neto
, pp. f.).
 The basic idea concerning QE for the vector model is to modify the
query vector q so that it becomes more similar to the vectors for the
relevant documents. Two assumptions are made: (a) the vectors for do-
cuments that have been identified as relevant are similar, i.e. relevant
documents are similar, and (b) the vectors for non-relevant documents
have a weak similarity with the vectors for relevant documents.
 Let D

r
 be the set of relevant documents (among the retrieved ones),

D
n
 the set of non-relevant documents (among the retrieved ones), and

let , and  be constants. Further, let q be a query and q the corre-
sponding vector. q is matched against the document vectors, and the
documents are ranked on the basis of the generated similarity values.
The user judges the relevance of, for example, the  most highly
ranked documents. The set D

r
 will then contain the relevant documents

among the , while the set D
n
 will contain the non-relevant ones

among the . A modified query vector q
m
 could now be created, for

example by means of the following equation (ibid., p. ):

 ()

Let us assume that , and  are equal to . The calculation of the
modified query vector is made as follows. First, average vectors are gene-
rated. For each term k

i
 in the vocabulary, k

i
’s weights in the documents

that have been judged relevant are summed. This is done by way of
adding the vectors of these documents. The result of the addition is a
new vector, where a given position contains the sum of the weights (in
the relevant documents) of the corresponding term. Then








HUMAN IT

164

PER AHLGREN

165

is multiplied with the new vector. (The denominator in the expres-
sion above is the number of objects in the set D

r
, i.e. the number of

documents judged to be relevant.) The result of this becomes a new
vector. A given position in the vector contains the average weight of
the corresponding term in the relevant documents. This new vector
is the average vector for the relevant documents. Then the correspon-
ding operations are executed with respect to the documents judged as
non-relevant.
 When the average vectors have been created, the difference between
them is calculated. The result becomes a new vector, in which a given
position contains the difference between the average weight of the cor-
responding term in the relevant documents and its average weight in
the non-relevant ones. Finally, this new vector is added to the initial
query vector. A given position in the resulting vector – the modified
query vector q

m
 – contains the sum of the corresponding term’s weight

in the initial query and the difference between its average weight in the
relevant documents and its average weight in the non-relevant ones.
 The modified vector q

m
 is matched against the document vectors and

the documents are ranked again on the basis of the generated similarity
values. If desired, a new query vector could be created on the basis of
relevance judgements with respect to the new ranking.
 By using the initial query vector, initial query terms could be given
a comparatively great importance in the modified query. If a term, that
does not occur in q, occurs in one or more documents judged to be
relevant, but not in any document judged to be non-relevant, the term
will be added to q, i.e. its weight in the modified query vector becomes
greater than 0. Further, the importance of a query term could be toned
down in the new query. This could be done if the term occurs in few
or no relevant documents but in a number of non-relevant ones. As a
matter of fact, such a scenario could result in the weight of the term
in the new query being 0 (or negative).4 Such a term will not give any
positive contribution to the similarity value for a document that con-
tains the term (with regard to the new query).





HUMAN IT

166

PER AHLGREN

167

 The method described above is an example of QE based on search
results.5

QE by local clustering

Baeza-Yates & Ribeiro-Neto (ibid., p. ) describe a method that, like
the method in the previous section, is based on search results, but that
does not involve assistance from the user. The idea here is to use the
documents retrieved by the initial query q to construct, for each query
term (or word stem in the query), a cluster (i.e. a group) of terms (or
word stems) which are correlated with the query term (the word stem).
The correlation between terms could be defined in different ways. Once
the clusters have been created, the query is expanded with the terms
(or word stems) of the clusters.
 The method works with local association clusters, and the following
is a description of how these could be created. The example makes use
of terms rather than word stems. Let D

l
 be the set of the documents

retrieved by a query q. We will call the set in question the local document
set. The local vocabulary, V

l
, is defined as the set of all distinct words

in D
l
.

 An association cluster is based on co-occurrences of terms in docu-
ments (two terms co-occur in a document if both terms occur in the
document). The idea is that words that often co-occur in documents
are semantically related. Let k

u
 and k

v
 be words in the local vocabulary

V
l
 and let f

ki,j
 be the frequency of the term k

i
 in the document d

j
. The

following equation defines the correlation, c
u,v

, between the two words
with regard to the local document set D

l
:

 ()

The correlation factor c
u,v

 does not take into consideration whether the
two words have similar frequencies in the documents or not. The factor
is therefor said to be non-normalised. The following factor, however,
takes this into consideration and is said to be normalised:

c f fu v k j k j
d D

u v

j l

, , ,= ×
∈
∑

HUMAN IT

166

PER AHLGREN

167

 ()

If the two words have exactly the same frequencies in all documents
considered, and if at least one frequency is higher than 0, we obtain the
maximum correlation value, .
 Now assume that we have measured the correlation for each pair of
words in V

l
 according to one of the two alternatives above. We could

place the correlation values in an m times m association matrix (where
m is the number of words in V

l
), i.e. a table where the words in the local

vocabulary are represented both horizontally and vertically. A given cell
in the matrix shows the correlation value for the words corresponding
to the row and the column that the cell belongs to.
 Given the matrix, we could create local association clusters according
to the following: for each term k

u
 in V

l
 we start searching the row in the

matrix that corresponds to k
u
, i.e. row number u. Then we search for

the n highest correlation values in this row, disregarding k
u
’s correlation

with itself. Let S
u
(n) be the set of terms corresponding to the n highest

correlation values. We find these terms by moving to the top of the
column in which the value was found. We call S

u
(n) a local association

cluster around the term k
u
.

 We can now expand the query q. For each term k
u
 in q, the terms

(or some of them) of the local association cluster S
u
(n) are added to q.

The new query, say q´, will hopefully retrieve more relevant documents
than the initial query q.
 As we are interested only in obtaining association clusters around
the query terms, the system does not have to perform the correlation
calculations for two terms that do not occur in q. This means that
the association clusters around the query terms could be generated
quickly.

c
c

c c cu v norm
u v

u u v v u v
, ()

,

, , ,

=
+ −

HUMAN IT

168

PER AHLGREN

169

QE based on global analysis

The following will describe a method that involves an analysis of the
whole document collection. The method is based on a collection-de-
pendent knowledge structure and will be described rather informally
(ibid., pp. –).
 The method involves a number of steps. () Each term k

i
 in the vo-

cabulary is associated with an N-dimensional vector

 , ()

where N is the number of documents in the collection, and where w
i,j

is k
i
’s weight in the document d

j
. How these weights are calculated is

described in Baeza-Yates & Ribeiro-Neto  (p. ).
 () The correlation c

u,v
 between two terms, k

u
 and k

v
, is calculated

and a global similarity thesaurus (the collection-dependent knowledge
structure) is generated. Here, the vectors of the terms are used. c

u,v
 is

defined according to

 ()

Observe that all documents in the collection are used to find the cor-
relation between the terms. The similarity thesaurus is obtained by
calculating the correlation for each pair of terms in the vocabulary. We
could place these values in a t times t matrix (t is the number of terms
in the vocabulary). Generating the global similarity thesaurus demands
a great deal of calculations. However, this only has to be done once,
then the thesaurus is updated continually.
 () This step expands the initial query q. (.) The similarity between
each term k

v
 (which does not occur in q as we are going to expand q

with new terms) and the initial query q is calculated by means of the
similarity thesaurus according to

 , ()

where w
u,q

 is the query term k
u
’s weight in the query q (assuming that the

query terms are weighted, just like the terms in a document). Note that

sim q k w cv u q u v
k qu

(,) , ,= ×
∈

∑

c k k w wu v u v u j v j
d j

, , ,= ⋅ = ×
∀
∑

r r


r
k w w wi i i i N= (, ,), , ,1 2 ... , 

HUMAN IT

168

PER AHLGREN

169

the addition is made across all query terms. A term with high correla-
tion with highly weighted query terms gets a high similarity value.
 (.) The terms are now ranked on the basis of the calculated simi-
larity values. The r most highly ranked terms are chosen and added to
the initial query q. The result is an expanded query q´. Then each ex-
pansion term k

v
 in the expanded query q´ is weighted. Higher ranked

expansion terms get higher weights than lower ranked ones. Finally, q´
is matched against the document collection.

QE based on a collection-independent knowledge structure

Voorhees () used a general knowledge structure, WordNet, as a
source for expansion terms. WordNet is a manually constructed lexical
system developed at Princeton University. The basic components of the
system are sets of synonyms, synsets. These are organised by defining
various lexical relations through them.
 Voorhees used only the noun section of WordNet. Lexical relations
with regard to nouns include the is-a-relation and three various part-of-
relations. In Figure , a section of WordNet is shown, namely some of the
relations that are defined for one of the meanings of the word “swing”.6
A rectangle represents a synset, the elements of which are listed in the
rectangle. A link in the shape of a straight line represents the is-a-relation,
and a link in the shape of an arch represents a part-of-relation. For ex-
ample, a “trapeze” is a “swing”, which in turn is part of a “playground”.

 device

 mechanical device plaything
 toy

 swing

 playground

 trapeze

Figure . Some of the relations defined in WordNet for one of the meanings of the word
“swing”. The figure is based on Voorhees  (p. ).

HUMAN IT

170

PER AHLGREN

171

 Voorhees used a part of the TREC collection7 in her experiments.
 TREC topics were matched in each experiment against ca. ,
full text documents. The documents were automatically indexed, and
the document terms weighted. The text in a TREC topic is a text in
natural language, which expresses an information need (for an example
of a TREC topic text, see Voorhees , p. ).
 Voorhees examined, among other things, if an automatic choice of
expansion terms from WordNet could improve the retrieval effective-
ness. In the experiments in this partial study a query was derived, not
from the whole text of a TREC topic, but only from a (summary) part
of it. This resulted in initial queries with a small number of terms (com-
pared with queries derived from the whole text of a TREC topic). The
reason for Voorhees to experiment with short queries was the fact that
another part of the study had failed to show that expansion of queries
derived from the whole text of a TREC topic had improved the retrieval
effectiveness (ibid., p. ). The derived query terms were weighted, just
like the terms of a document.
 When the queries had been generated, the expansion itself could be-
gin. The idea was for the system to choose terms, in an initial query, that
were appropriate for expansion. Appropriateness was approximated
with the number of documents in the collection in which the query
term occurs (a term occurring in a great proportion of the documents in
a collection is less useful with regard to distinguishing between relevant
and non-relevant documents).
 A chosen query term k could have several meanings. The system had
to choose expansion terms in WordNet for k with meanings related to
the meaning of k in the initial query. To achieve this, a term had to be
related to at least two chosen query terms in order to qualify as an ex-
pansion term.
 Let q be an initial query. The algorithm Voorhees applied in order to
produce expansion terms for q could be informally described as follows.
For each term k in q, the system first checks if the number of documents
in the collection containing k is lower or equal to N (a threshold value).

HUMAN IT

170

PER AHLGREN

171

If the number in question is higher than N, k will not be chosen. If
the number is lower or equal to N, k will be chosen, and the system
seeks each synset in WordNet that contains k and expands the set (i.e.
follows links from the set to other synsets). Thereby, a list of potential
expansion terms is created for each chosen term. The number of lists
is then equal to the number of chosen terms in q. Finally, the system
chooses each term that is found in at least two lists and these terms will
form the expansion terms for q.
 A number of experiments with automatically expanded queries were
made, and the retrieval effectiveness (in terms of average precision8
across all test queries) for the strategies of the experiments were com-
pared to the effectiveness for the strategy of not expanding the initial
queries.9 None of the expansion strategies showed any improvement
in effectiveness to speak of. Actually, the effectiveness decreased by .
per cent for one of the strategies. One explanation for this poor result is
that terms that occurred in two or more lists tended to be rather general
and have more than one meaning (ibid., pp. f.).

Interactive QE

Efthimiadis () studied eight ranking algorithms for QE. Examples
of algorithms that were studied are WPQ and Porter, which are described
above (see equations [] and []). One of the aims of the study was to
examine the effectiveness of the ranking algorithms regarding their ability
to reflect users’ preferences for expansion terms (ibid., p. ). The users
in the study were faculty members, researchers and doctoral students.
 The study involved  searches, and each search involved one user.
The initial queries were matched against a database consisting of bib-
liographical records. The matching process resulted in a ranked list of
records, and the user judged a number of top ranked records for rele-
vance. All unique terms from the descriptor and identifier fields in the
records judged relevant by the user were presented to him. He then
chose the terms he considered to be useful as expansion terms, and
ranked them.

HUMAN IT

172

PER AHLGREN

173

 The term weights (for all unique terms from the descriptor and
identifier fields in the records judged by the user to be relevant) for each
algorithm and each search were then calculated, and the terms ranked
on the basis of the weights. For a given search, eight ranked term lists
were generated, one for each algorithm.
 In order to establish whether or not the term lists from the eight al-
gorithms reflected the preferences of the users with regard to expansion
terms, Efthimiadis experimented with, among other things, rank sums.
For a given search, each term from the lists was given a rank. Thereby,
it was possible to find out which ranks the user’s five most highly ran-
ked terms had in the various lists. Then, the sum of the five ranks was
calculated for each list.10 For a given search, eight rank sums were gene-
rated, one for each algorithm. The lower a rank sum an algorithm had
in a given search, the better it reflected the user’s choice with respect to
the five best terms. The mean values (over all  searches) with regard
to the rank sums of the algorithms were calculated. It was shown that
WPQ, together with another algorithm, had the best result, i.e. the
lowest mean value. WPQ approximated the users’ preferences well in
comparison with most of the other algorithms.
 It is important to remember that the point, against which the effec-
tiveness of the various algorithms was measured, was the users’ choice
of best terms. Assume that a certain algorithm is used for automatic
QE. If users prefer inappropriate terms (from a retrieval point of view),
it is hardly expedient that the algorithm places preferred terms high
on the ranking lists (i.e. is effective in the sense used in Efthimiadis’s
study). This would mean that the initial query is expanded in an in-
appropriate way.
 If we assume, instead, that users generally choose terms for expansion
in a rational way – which may be a reasonable assumption, at least con-
cerning sophisticated information seekers – a ranking algorithm that
places preferred terms high on the ranking lists, could be convenient in
interactive (and automatic) QE. As opposed to the system presenting
unranked lists of terms from documents judged to be relevant (lists

HUMAN IT

172

PER AHLGREN

173

from which the user is supposed to choose terms for expansion), the
terms from documents judged to be relevant are presented, with the aid
of the algorithm, in ranked lists, with regard to appropriateness (from
the system’s point of view). Users will then quickly find terms that they
prefer (and that are suitable for expansion), since such terms tend to be
found high in the ranked lists.
 It could be mentioned that Efthimiadis also used the rank sums of
the algorithms for another purpose. Apparently, two sets of rank sums
were generated for each pair of algorithms A and B, one for A and one
for B, with  rank sums in each. In order to find out if A and B behaved
in a similar way across the  searches (and with respect to the user’s
five best terms), Efthimiadis applied the correlation measure Person’s
r on the two sets of rank sums. A very strong positive correlation was
observed between several algorithms. A positive correlation means,
for two given algorithms A and B, that a high rank sum for A generally
corresponds to a high rank sum for B and that a low rank sum for A
generally corresponds to a low rank sum for B. In fact, a positive cor-
relation was found for each pair of the studied algorithms.

Concluding remarks

It is not unusual that users of WWW search engines construct queries
consisting of a small number of terms (Baeza-Yates & Ribeiro-Neto
, p. ). Such queries can be very ineffective but could be improved
by applying QE. The three latter methods for automatic QE described
above are attractive in this context because users do not have to perform
any relevance judgements. They only need to type the initial query. The
system then expands the query, matches the expanded query against the
document collection and presents a search result to the user.
 To construct an automatic procedure for choosing expansion terms
from a knowledge structure of WordNet’s kind is no trivial task. As seen
above, Voorhees’s automatically expanded queries did not improve the
retrieval effectiveness to any greater extent. The terms chosen by the
system to be added to initial queries tended to be ambiguous. Such

HUMAN IT

174

PER AHLGREN

175

terms match documents in which the term has been used in a sense that
deviates from the sense that is relevant for the query. This may result in
the retrieval of non-relevant documents, which has a negative impact
on precision. However, the idea of using a lexical system of WordNet’s
kind might be fruitful. It would be interesting to use a Swedish equi-
valent to WordNet for QE. In that case, it might be convenient to find
another process for automatic choice of terms from the lexical system
than the one used by Voorhees.
 The method of QE by local clustering runs into problems if none
or few of the initially retrieved documents are relevant. Assume that no
retrieved document is relevant. Under this assumption, it is hardly ad-
visable to expand the initial query with terms from local association
clusters. The problem is that there is no support for the assumption that
a term, belonging to a local association cluster around a query term k

u
,

would be effective in retrieving relevant documents. Such a term co-oc-
curs with k

u
in (initially retrieved) non-relevant documents.

Per Ahlgren is a Ph.D. student at the Swedish School of Library and Infor-
mation Science, University College of Borås/Göteborg University. His main
interests are information retrieval and bibliometrics.
E-mail: Per.Ahlgren@hb.se

HUMAN IT

174

PER AHLGREN

175

Notes

1. A query is a formal representation (in a given IR system language) of an informa-
tion need.

2. An IR model could be said to be a simplified (mathematical) theory of how an IR
system should be constructed.

3. The weights consist of numerical values and quantify the importance, with respect
to description of semantic content, that the corresponding term has in the document
or the query, respectively.

4. If this is true, the term will be absent in the new query.

5. The claim that the method is an example of QE is slightly improper. As is shown
above, the method could involve deletions of initial query terms.

6. The word “swing” has several other meanings. Also for its other meanings, different
lexical relations are defined in WordNet.

7. TREC (Text Retrieval Conference) is an on-going series of retrieval experiments,
involving research groups from various parts of the world. See Text REtrieval Con-
ference .

8. The fraction of the retrieved documents which are relevant.

9. In Voorhees’s study, both documents and queries were represented by vectors. In the
various experiments of the study, the similarity between document vectors and query
vector was measured, and the documents were ranked on the basis of the measured
values. The various expansion strategies differed, among other things, concerning
the value of N.

10. If the five terms are found in the first five positions in the list of an algorithm, the
optimal rank sum is achieved, namely .

HUMAN IT

176

PER-ARNE PERSSON & JAMES M. NYCE

177

References

-, .  -, . (): Modern Information Retrieval. New
York: ACM Press.

, . (): User Choices: A New Yardstick for the Evaluation of Ran-
king Algorithms for Interactive Query Expansion. Information Processing & Mana-
gement, no. , vol. , ‒.

, . (): Query Expansion. In: M.E. Williams, ed. Annual Review of
Information Science and Technology, vol. . Medford, N.J.: ASIS, ‒.

, . (): Online Information Retrieval: Concepts, Principles, and Techniques.
San Diego: Academic Press.

, . (): Information Storage and Retrieval. New York: John Wiley &
Sons.

   (): Text REtrieval Conference (TREC) HomePage.
URL: http://trec.nist.gov. [--]

, . (): Query Expansion Using Lexical-Semantic Relations. In: W.B.
Croft & C.J. van Rijsbergen, eds. Proceedings of the th Annual International ACM-
SIGIR Conference on Research and Development in Information Retrieval. Dublin, Ire-

land, ‒ July . ACM/Springer, ‒.

